Advertisement

Bioenergetics pp 363-372 | Cite as

Studies on the Function of the Mitochondrial Hinge Protein: Molecular Genetic Approach Using Yeast as a Model System

  • Chong H. Kim
  • Richard S. Zitomer

Summary

This chapter summarizes our recent studies on the 17 kDa protein, subunit VI of yeast mitochondrial cytochrome bc 1 complex, as a model system for the investigation of the function of the bovine heart mitochondrial hinge protein. The yeast 17 kDa protein shows an extensive homology to the hinge protein from the bovine heart as well as the human mitochondria. A double deletion mutant of Saccahromyces cerevisiae, which lacks the 17 kDa protein and iso-1-cytochrome c, was constructed. This double deletion mutant (cyc1-1,17kDa- 1) cannot grow on nonfermentable carbon source (glycerol-), but can be complemented to normal growth, when it is transformed by yeast vectors containing the wild type 17 kDa protein gene or the CYC1 gene. This double mutant showed a growth rate and a oxygen consumption rate three times slower than those of the wild type. These results suggest that the 17 kDa protein may be essential for cell respiration of a yeast strain whose cytochrome c level is limited (only 5%). This glycerol phenotype allows genetic studies on the function of the 17 kDa protein in yeast mitochondria and those information on the function of the 17 kDa protein can lead us to elucidate the role of the hinge protein in mammalian mitochondria.

Keywords

Double Mutant Oxygen Consumption Rate Respiratory Capacity CYC1 Gene Yeast Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katan, M.B., Pool, L., and Groot, G.S.P. (1976) Eur. J. Biochem. 65, 95–105PubMedCrossRefGoogle Scholar
  2. 2.
    Siedow, J.N., Power, S., De La Rosa, F.F., and Palmer, G. (1978) J. Biol. Chem. 253, 2392–2399PubMedGoogle Scholar
  3. 3.
    Hatefi, Y. (1985) Annu. Rev. Biochem. 54, 1105–1169CrossRefGoogle Scholar
  4. 4.
    Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282–12289PubMedGoogle Scholar
  5. 5.
    Schägger, H., Link, Th.A., Engel, W.D., and von Jagow, G. (1986) Methods Enzymol. 126, 224–237PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, C.H., and King, T.E.(1981) Biochem. Biophys. Res. Commun. 101, 29–36CrossRefGoogle Scholar
  7. 7.
    Wakabayashi, S., Takeda, H., Matsubara, H., Kim, C.H. and King, T.E. (1982) J. Biochem. 91, 2077–2085PubMedGoogle Scholar
  8. 8.
    Kim, C.H., and King, T.E. (1983) J. Biol. Chem. 258, 13543–13551PubMedGoogle Scholar
  9. 9.
    Kim, C.H. (1987) in Advances in Membrane Biochemistry and Bioenergetics (Kim, C.H., Tedeschi, H., Diwan, J.J. and Salerno, J.C., eds.) Plenum Press, New York, pp. 167–178CrossRefGoogle Scholar
  10. 10.
    Kim, C.H., Balny, C., and King, T.E. (1987) J. Biol. Chem. 212, 8103–8108Google Scholar
  11. 11.
    Ludwig, B., Kurowski, B., Panskus, G. and Steinrucke, P. (1987) in Cytochromes; Molecular Biology and Bioenergetics (Papa, S., Chance, B. and Ernster, L., eds.) Plenum Press, New York, pp. 41–47Google Scholar
  12. 12.
    Kim, C.H., Balny, C. and King, T.E. (1987) in Cytochromes; Molecular Biology and Bioenergetics (Papa, S., Chance, B., and Ernster, L., eds.) Plenum Press, New York, pp. 415–422Google Scholar
  13. 13.
    Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991–1996PubMedGoogle Scholar
  14. 14.
    Schoppink, P.J., Grivell, L.A., and Berden, J.A. (1987) in Advances in Membrane Biochemistry and Bioenergetics (Kim, C.H., Tedeschi, H., Diwan, J.J., and Salerno, J.C., eds.) Plenum Press, New York, pp.129–139CrossRefGoogle Scholar
  15. 15.
    Schmitt, M.E., and Trumpower, B. (1987) in Cytochromes; Molecular Biology and Bioenergetics (Papa, S., Chance, B., and Ernster, L., eds.) Plenum Press, New York, pp. 177–187Google Scholar
  16. 16.
    Schoppink, P.J., Hemrika, W., Reyner, J.M., Grivell, L.A., and Berden, J.A.(1988) Eur. J. Biochem. 173, 115–122PubMedCrossRefGoogle Scholar
  17. 17.
    Kim, C.H., and Zitomer, R.S. (1990) submittedGoogle Scholar
  18. 18.
    Van Loon, A.P.G.M., de Groot, R.J., de Haan, M., Dekker, A., and Grivell, L.A. (1984) EMBO J. 3, 1039–1043PubMedGoogle Scholar
  19. 19.
    Ohta, S., Goto, K., Arai, H., and Kagawa, Y. (1987) FEBS Lett. 226, 171–175PubMedCrossRefGoogle Scholar
  20. 20.
    Schoppink, P.J., Hemrika, W., and Berden, J.A. (1989) Biochim. Biophys. Acta 974, 192–201PubMedCrossRefGoogle Scholar
  21. 21.
    Sherman, F., Stewart, J.W., Margoliash, E., Parker, J., and Campbell, W.(1966) Proc. Natl. Acad. Sci., U.S.A. 55, 1498–1504PubMedCrossRefGoogle Scholar
  22. 22.
    Downie, J.A., Stewart, J.W., Brockman, N., Schweingruber, A., and Sherman, F. (1977) J. Biol. Chem. 113, 369–384Google Scholar
  23. 23.
    Sherman, F., Stewart, J. W., Jackson, M., Gilmore, R. A., and Parker, J.H. (1974) Genetics 77, 255–284PubMedGoogle Scholar
  24. 24.
    Klebe, R. J., Harris, J. V., Sharp, Z. D., and Douglas, M. G. (1983) Gene 25, 333–341PubMedCrossRefGoogle Scholar
  25. 25.
    Southern, E.M. (1975) J. Mol. Biol. 98, 503–517PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry, C. V., Weiss, J. L., Walthall, D.A., and Zitomer, R.S. (1983) Proc. Natl. Acad. Sci., U.S.A. 80, 151–155PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Chong H. Kim
    • 1
    • 2
  • Richard S. Zitomer
    • 2
  1. 1.Department of BiologyRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Biological SciencesState University of New YorkAlbanyUSA

Personalised recommendations