Bioenergetics pp 341-351 | Cite as

Molecule and Gene of Sulfolobus acidocaldarius ATPase

  • Kimitoshi Denda
  • Jin Konishi
  • Kyoko Hajiro
  • Tairo Oshima
  • Takayasu Date
  • Masasuke Yoshida


A novel ATPase (Sul-ATPase) was solubilized from membranes of an archaebacterium, Sulfolobus acidocaldarius, by washing with a buffer containing EDTA. Enzymatic characteristics of this ATPase are distinctly different from F1-ATPase and resemble eukaryotic endomembrane H+-ATPase. Attempt was made to isolate the whole ATPase complex from membranes using a detergent and the isolated complex showed several protein bands in SDS-PAGE including a band at the position around 40KD in addition to subunits of water-soluble Sul-ATPase. By the same procedure to isolate proteolipid subunit, or Foc subunit, of F0F1-ATPase, a very hydrophobic protein was extracted from membranes of this bacterium by chloroform-methanol treatment. [14C]DCCD bound to this protein when the membrane was incubated with this reagent. Molecular cloning of the Sul-ATPase operon revealed that the α and β subunits of Sul-ATPase show a remarkable amino acid sequence homology to the 70K and 60K subunits of eukaryotic vacuolar H+-ATPases, respectively. They also show significant, though less remarkable, homology to the α and β subunits of F0F1-ATPase. The operon also contains a gene encoding the proteolipid subunit above mentioned. Its sequence clearly shows that it is a Sulfolobus equivalence of Foc subunit. From the analysis of the sequences, a phylogenetic tree of evolution of H+-ATPases was constructed and we propose the monomeric H+-ATPase as the most primordial H+-ATPase. If it is really the case, cooperative kinetics observed for F0F1 -ATPases are related to some regulatory functions which were added to the core catalytic function later in evolution. Close relation between archaebacterial ATPases and the eukaryotic endomembrane H+-ATPases also implies that the eukaryotic endomembrane system has been originated from inclusion of the plasma membranes of an ancestral archaebacterial cell. At the standpoint of symbiotic theory of the origin of eukaryote, above proposition means that the host cell for symbionts was an ancestral archaebacterial cell.


Partial Amino Acid Sequence ATPase Complex Sulfolobus Acidocaldarius Host Cell Plasma Membrane Proteolipid Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hatefi, Y. (1985) Ann. Rev. Biochem. 54, 1015–1069PubMedCrossRefGoogle Scholar
  2. 2.
    Boyer, P.D. (1987) Biochemistry 26, 8503–8507PubMedCrossRefGoogle Scholar
  3. 3.
    Futai, M., Noumi, T., and Maeda, M. (1989) Ann. Rev. Bichem. 58, 111–136CrossRefGoogle Scholar
  4. 4.
    Senior, A.E. (1990) Ann. Rev. Biophys. in pressGoogle Scholar
  5. 5.
    Walker, J.E., Fearnly, I.M., Gay, N.J., Gibson, B.W., Northrop, F.D., Powell, S.J., Runswick, M.J., Saraste, M., and Tybulewicz, V.L.J. (1985) J. Mol. Biol. 184, 677–701PubMedCrossRefGoogle Scholar
  6. 6.
    Walker, J.E., Cozens, A.L., Dyer, M.R., Fearnley, I.M., Powell, S.J., and Runswick, M.J. (1987) Biochem. Soc. Trans. 15, 104–106PubMedGoogle Scholar
  7. 7.
    Inatomi, K. (1986) J. Bacteriol. 167, 837–841PubMedGoogle Scholar
  8. 8.
    Mukohata, Y. and Yoshida, M. (1987) J. Biochem. 102, 797–802PubMedGoogle Scholar
  9. 9.
    Konishi, J., Wakagi, T., Oshima, T., and Yoshida, M. (1987) J. Biochem. 102, 1379–1387PubMedGoogle Scholar
  10. 10.
    Lübben, M., Lünsdorf, H., Schäfer, G. (1988) Biol. Chem. Hoppe-Seyler 369, 1259–1266PubMedCrossRefGoogle Scholar
  11. 11.
    Stan-Lotter, H. and Hochstein, L.I. (1989) Eur. J. Biochem 179, 155–160PubMedCrossRefGoogle Scholar
  12. 12.
    Schobert, B. and Lanyi, J.K. (1989) J. Biol. Chem. 264, 12805–12812PubMedGoogle Scholar
  13. 13.
    Konishi, J., Denda, K., Oshima, T., Wakagi, T., Uchida, E., Ohsumi, Y., Anraku, Y., Matsumoto, T., Wakabayashi, T., Mukohata, Y., Ihara, K., Inatomi, K., Kato, K., Ohta, T., Allison, W.S., and Yoshida, M. (1989) J. Biochem. in pressGoogle Scholar
  14. 14.
    Sebald, W. and Hoppe, J. (1981) Curr. Top. Bioenerg. 12, 1–64Google Scholar
  15. 15.
    Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988) J. Biol. Chem. 263, 6012–6015PubMedGoogle Scholar
  16. 16.
    Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1988) J. Biol. Chem. 263, 17251–17254PubMedGoogle Scholar
  17. 17.
    Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H., and Taiz, L. (1988) J. Biol.Chem. 263, 9102–9112PubMedGoogle Scholar
  18. 18.
    Bowman, E.J., Tenney, K., and Bowman, B.J. (1988) J. Biol. Chem. 263, 13994–14001PubMedGoogle Scholar
  19. 19.
    Bowman, B.J., Allen, R., Wechser, M.A., and Bowman, E.J. (1988) J. Biol. Chem. 263, 14002–14007PubMedGoogle Scholar
  20. 20.
    Manolson, M.F., Ouellette, B.F.F., Filion, M., and Poole, R.J. (1988) J. Biol. Chem. 263, 17987–17994PubMedGoogle Scholar
  21. 21.
    Nelson, H., Mandiyan, S., and Nelson, N. (1989) J. Biol. Chem. 264, 1775–1778PubMedGoogle Scholar
  22. 22.
    Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., Manolson, M.F., Poole, R.J., Date, T., Oshima, T., Konishi, J., Denda, K., and Yoshida, M. (1989) Froc. Natl. Acad. Sci. U. S. A. 86, 6661–6665CrossRefGoogle Scholar
  23. 23.
    Inatomi, K., Eya, S., Maeda, M., and Futai, M. (1989) J. Biol. Chem. 264, 10954–10959PubMedGoogle Scholar
  24. 24.
    Bernasconi, P., Rausch, T., Gogarten, J.P., and Taiz, L. (1989) FEBS Lett. 251, 132–136PubMedCrossRefGoogle Scholar
  25. 25.
    Denda, K., Konishi, J., Oshima, T., Date, T., and Yoshida, M. (1989) J. Biol. Chem. 264, 7119–7121PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kimitoshi Denda
    • 1
  • Jin Konishi
    • 1
  • Kyoko Hajiro
    • 1
  • Tairo Oshima
    • 1
  • Takayasu Date
    • 2
  • Masasuke Yoshida
    • 1
  1. 1.Department of Life ScienceTokyo Institute of TechnologyNagatsuta, Yokohama 227Japan
  2. 2.Department of BiochemstryKanazawa Medical UniversityUchinada, IshikawaJapan

Personalised recommendations