Bioenergetics pp 305-325 | Cite as

Subunit 8 of Yeast Mitochondrial ATP Synthase: Biochemical Genetics and Membrane Assembly

  • Phillip Nagley
  • Rodney J. Devenish
  • Ruby H. P. Law
  • Ronald J. Maxwell
  • Debra Nero
  • Anthony W. Linnane


Subunit 8 is a small integral membrane protein of the proton-translocating F0 sector of the mitochondrial ATP synthase complex. We here review our current understanding of the structure, expression and membrane integration of this protein, which is naturally encoded by the mitochondrial aapl gene in bakers’ yeast Saccharomyces cerevisiae. Genetic, biochemical and immunological analyses of yeast mutants deficient in subunit 8 production have begun to reveal the role of subunit 8 in the assembly and function of the mitochondrial ATPase complex. A recent major advance has been the recoding of the gene encoding subunit 8 to achieve its relocation to the nucleus such that nuclearly encoded subunit 8 can be demonstrated to functionally assemble into the mitochondrial ATPase complex. Further, the expression of subunit 8 in vitro, in the form of a chimaeric precursor bearing an N-terminal cleavable presequence, has permitted study of the import of the protein into isolated mitochondria and its assembly into the enzyme complex. The powerful combination of in vivo and in vitro approaches has now led to the systematic manipulation of subunit 8 using site-directed mutagenesis in order to gain further insight into its structure and function.


Rabbit Reticulocyte Lysate Yeast Mitochondrion Hydropathy Plot Torulopsis Glabrata Monoazide Ethidium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pedersen, P. L. and Carafoli, E. (1987) Trends Biochem. Sci. 12, 146–150.CrossRefGoogle Scholar
  2. 2.
    Nagley, P. (1988) Trends Genet. 4, 46–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Macreadie, I. G., Choo, W. M., Novitski, C. E., Marzuki, S., Nagley, P., Linnane, A. W. and Lukins, H. B. (1982) Biochem. Int. 5, 129–136.Google Scholar
  4. 4.
    Macreadie, I. G., Novitski, C. E., Maxwell, R. J., John, U. P., Ooi, B. G., McMullen, G. L., Lukins, H. B., Linnane, A. W. and Nagley, P. (1983) Nucleic Acids Res. 11, 4435–4451.PubMedCrossRefGoogle Scholar
  5. 5.
    Linnane, A. W., Lukins, H. B., Nagley, P., Marzuki, S., Hadikusumo, R. G., Jean-Francois, M. J. B., John, U. P., Ooi, B. G., Watkins, L., Willson, T. A., Wright, J. and Meltzer, S. (1985) in Achivements and Perspectives of Mitochondrial Research (Quagliarello, E., Slater, E. C., Palmieri, F., Saccone, C. and Kroon, A. M., eds) vol. 1 Bioenergetics, pp. 211–222, Elsevier Science Publishers, Amsterdam.Google Scholar
  6. 6.
    Nagley, P., Farrell, L. B., Gearing, D. P., Nero, D., Meltzer, S. and Devenish, R. J. (1988) Proc. Natl. Acad. Sci. USA 85, 2091–2095.PubMedCrossRefGoogle Scholar
  7. 7.
    Velours, J., Esparza, M., Hoppe, J., Sebald, W. and Guerin, B. (1984) EMBO J. 3, 207–212.PubMedGoogle Scholar
  8. 8.
    Velours, J., Esparza, M. and Guerin, B. (1982) Biochem. Biophys. Res. Commun. 109, 1192–1199.PubMedCrossRefGoogle Scholar
  9. 9.
    Sebald, W. and Hoppe, J. (1981) Curr. Top. Bioenerg. 12, 1–64.Google Scholar
  10. 10.
    Farrell, L. B., Gearing, D. P. and Nagley, P. (1988) Eur. J. Biochem. 173, 131–137.PubMedCrossRefGoogle Scholar
  11. 11.
    Novitski, C. E., Macreadie, I. C., Maxwell, R. J., Lukins, H. B., Linnane, A. W. and Nagley, P. (1984) Curr. Genet. 8, 135–146.CrossRefGoogle Scholar
  12. 12.
    Cobon, G. S., Beilharz, M. W., Linnane, A. W. and Nagley, P. (1982) Curr. Genet. 5, 97–107.CrossRefGoogle Scholar
  13. 13.
    Osinga, K. A., De Vries, E., Van der Horst, G. and Tabak, H. F. (1984) EMBO J. 3, 829–834.PubMedGoogle Scholar
  14. 14.
    Simon, M. and Faye, G. (1984) Mol. Gen. Genet. 196, 266–274.PubMedCrossRefGoogle Scholar
  15. 15.
    Grivell, L. (1989) Eur. J. Biochem. 182, 477–493.PubMedCrossRefGoogle Scholar
  16. 16.
    Fearnley, I. M. and Walker, J. E. (1986) EMBO J. 5, 2003–2008.PubMedGoogle Scholar
  17. 17.
    Hadikusumo, R. G., Meltzer, S., Choo, W. M., Jean-Francois, M. J. B., Linnane, A. W. and Marzuki, S. (1988) Biochim. Biophys. Acta 933, 212–222.PubMedCrossRefGoogle Scholar
  18. 18.
    Marzuki, S., Watkins, L. C. and Choo, W. M. (1989) Biochim. Biophys. Acta 975, 222–230.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagley, P. and Devenish, R. J. (1989) Trends Biochem. Sci. 14, 31–35.CrossRefGoogle Scholar
  20. 20.
    Von Heijne, G. (1981) Eur. J. Biochem. 120, 275–278.CrossRefGoogle Scholar
  21. 21.
    Velours, J. and Guerin, B. (1986) Biochem. Biophys. Res. Commun. 138, 78–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Kyte, J. and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105–120.PubMedCrossRefGoogle Scholar
  23. 23.
    Engelman, D. M., Steitz, T. A. and Goldman, A. (1986) Ann. Rev. Biophys. Biophys. Chem. 15, 321–353.CrossRefGoogle Scholar
  24. 24.
    Grisi, E., Brown, T. A. Waring, R. B., Scazzochio, C. and Davies, R. W. (1982) Nucleic Acids Res. 10, 3531–3539.PubMedCrossRefGoogle Scholar
  25. 25.
    Morelli, G. and Macino, G. (1984) J. Mol. Biol. 178, 491–507.PubMedCrossRefGoogle Scholar
  26. 26.
    Anderson, S., De Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F. and Young, I. G. (1982) J. Mol. Biol. 156, 683–717.PubMedCrossRefGoogle Scholar
  27. 27.
    Walker, J. E., Tybulewicz, V. L. J., Falk, G., Gay, N. J. and Hampe, A. (1984) in H+-ATPase (ATP synthase) Structure, Function, Biogenesis (Papa, S., Altendorf, K., Ernster, L. and Packer, L., eds) pp. 1–14, Adriatica Editrice, Bari.Google Scholar
  28. 28.
    Jean-Francois, M. J. B., Hadikusumo, R. G., Watkins, L. C., Lukins, H. B., Linnane, A. W. and Marzuki, S. (1986) Biochim. Biophys. Acta 852, 133–143.CrossRefGoogle Scholar
  29. 29.
    Hadikusumo, R. G., Hertzog, P. J. and Marzuki, S. (1984) Biochim. Biophys. Acta 765, 258–267.PubMedCrossRefGoogle Scholar
  30. 30.
    Choo, W. M., Hadikusumo, R. G. and Marzuki, S. (1985) Biochim. Biophys. Acta 806, 290–304.PubMedCrossRefGoogle Scholar
  31. 31.
    Higuti, T., Takigawa, M., Kotera, Y., Oka, H., Uchida, J., Arakaki, R., Fujita, T. and Ogawa, T (1985) Proc. Natl. Acad. Sci. USA 82, 1331–1335.PubMedCrossRefGoogle Scholar
  32. 32.
    Higuti, T., Negama, T., Takigawa, M., Uchida, J., Yamane, T., Asai, T., Tani, I., Oeda, K., Shimizu, M., Nakamura, K. and Ohkava, H. (1988) J. Biol. Chem. 263, 6772–6776.PubMedGoogle Scholar
  33. 33.
    Uchida, J., Takigawa, M., Yamane, T., and Negama, Y., Tani, I. and Higuti, T. (1987) Biochem. Biophys. Res. Commun. 146, 953–958.PubMedCrossRefGoogle Scholar
  34. 34.
    Guerin, B. and Napias, C. (1978) Biochemistry 17, 2510–2516.PubMedCrossRefGoogle Scholar
  35. 35.
    Blondin, G. A. (1979) Biochem. Biophys. Res. Commun. 87, 1087–1094.PubMedCrossRefGoogle Scholar
  36. 36.
    Nagley, P., Willson, T. A., Tymms, M. J., Devenish, R. J. and Gearing, D. P. (1985) in Achievements and Perspectives of Mitochondrial Research (Quagliarello, E., Slater, E. C., Palmieri, F., Saccone, C. and Kroon, A. M., eds) vol. 2 Biogenesis, pp. 405–414, Elsevier Science Publishers, Amsterdam.Google Scholar
  37. 37.
    Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C. and Butow, R. A. (1988) Science 240, 1538–1541.PubMedCrossRefGoogle Scholar
  38. 38.
    Fox. T. D., Sanford, J. C. and McMullin, T. W. (1988) Proc. Natl. Acad. Sci. USA 85, 7288–7292.PubMedCrossRefGoogle Scholar
  39. 39.
    Krieg, P. A. and Melton, D. A. (1984) Nucleic Acids Res., 12, 7057–7070.PubMedCrossRefGoogle Scholar
  40. 40.
    Gearing, D. P., McMullen, G. L. and Nagley, P. (1985) Biochem. Int. 10, 907–915.PubMedGoogle Scholar
  41. 41.
    Viebrock, A., Perz, A. and Sebald, W. (1982) EMBO J. 1, 565–571.PubMedGoogle Scholar
  42. 42.
    Schmidt, B., Wachter, E., Sebald, W. and Neupert, W. (1984) Eur. J. Biochem. 144, 581–588.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt, B., Henning, B., Zimmerman, R. and Neupert, W. (1983b) J. Cell Biol. 96, 248–255.PubMedCrossRefGoogle Scholar
  44. 44.
    Gearing, D. P. and Nagley, P (1986) EMBO J. 5, 3651–3655.PubMedGoogle Scholar
  45. 45.
    Schmidt, B., Henning, B., Kohler, H. and Neupert, W. (1983a) J. Biol. Chem. 258, 4687–4689.PubMedGoogle Scholar
  46. 46.
    Kingsman S. M. and Kingsman, A. J. (1983) in Interferons: from Molecular Biology to Clinical Applications (Burke, D. C. and Morris, A. G., eds) pp. 211–254, Cambridge University Press, Cambridge.Google Scholar
  47. 47.
    Law, R. H. P., Devenish, R. J. and Nagley, P. (1989) Eur. J. Biochem. (in press).Google Scholar
  48. 48.
    Law, R. H. P., Farrell, L. B., Nero, D., Devenish, R. J. and Nagley, P. (1988) FEBS Lett. 236, 501–505.PubMedCrossRefGoogle Scholar
  49. 49.
    Eilers, M. and Schatz, G. (1988) Cell 52, 481–483.PubMedCrossRefGoogle Scholar
  50. 50.
    Verner, K. and Lemire, B. D. (1989) EMBO J. 8, 1491–1495.PubMedGoogle Scholar
  51. 51.
    Hartl, F. U., Pfanner, N., Nicholson, D. W. and Neupert, W. (1989) Biochim. Biophys. Acta 988, 1–45.PubMedGoogle Scholar
  52. 52.
    Law, R. H. P. and Nagley, P. (1989) Biochim. Biophys. Acta (submitted).Google Scholar
  53. 53.
    Pfanner, N., Muller, H. K., Harmey, M. A. and Neupert, W. (1987) EMBO J. 6, 3449–3454.PubMedGoogle Scholar
  54. 54.
    Endo, T., Eilers, M. and Schatz, G. (1989) J. Biol. Chem. 264, 2951–2956.PubMedGoogle Scholar
  55. 55.
    Rott, R. and Nelson, N. (1981) J. Biol. Chem. 256, 9224–9228.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Phillip Nagley
    • 1
  • Rodney J. Devenish
    • 1
  • Ruby H. P. Law
    • 1
  • Ronald J. Maxwell
    • 1
  • Debra Nero
    • 1
  • Anthony W. Linnane
    • 1
  1. 1.Department of Biochemistry and Centre for Molecular Biology and MedicineMonash UniversityClaytonAustralia

Personalised recommendations