Bioenergetics pp 241-249 | Cite as

A Mitochondrial Carrier Family for Solute Transport

  • Martin Klingenberg


It is generally accepted that mitochondria have been incorporated into eukaryotic cells from prokaryote progenitors. The similarity to prokaryotes is reflected clearly in the structure of the mitochondrial DNA. The most important compounds which are carried by mitochondria in the eukaryote cell are the systems of oxidative phosphorylation, comprising the respiratory chain and the ATP synthesis. Although the function of these components are quite similar, these complexes have acquired a considerable amount of additional peptides of still largely unknown function. The membrane carriers for anionic metabolites are entirely new components with clear functions having evolved on the transition from the procaryotes to the mitochondria.


Binding Center Twofold Axis Mitochondrial Carrier Mitochondrial Carrier Family Translocation Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klingenberg, M. (1976) in: The Enyzmes of Biological Enzymes: Membrane Transport, Martonosi A.N. (ed.), Plenum Publ. Corp., New YorkGoogle Scholar
  2. 2.
    Bücher, T., Klingenberg, M. (1958) Angew. Chemie 70, 552–570CrossRefGoogle Scholar
  3. 3.
    Aquila, H., Misra, D., Eulitz, M., Klingenberg, M. (1982) Hoppe-Seylers Z. Physiol. Chemie 363, 345–349CrossRefGoogle Scholar
  4. 4.
    Aquila, H., Link, T.A., Klingenberg, M. (1987) FEBS Lett 212, 1–9PubMedCrossRefGoogle Scholar
  5. 5.
    Aquila, H., Link, T.A., Klingenberg, M. (1985) EMBO J. 4, 2369–2376PubMedGoogle Scholar
  6. 6.
    Klingenberg, M. (1988) in: Molecular Basis of Biomembrane Transport, Palmieri, F. and Quagliariello (eds.), Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Hackenberg, H., Klingenberg, M. (1980) Biochemistry 19, 548–555PubMedCrossRefGoogle Scholar
  8. 8.
    Lin, C.S., Hackenberg, H., Klingenberg, M. (1980) FEBS Lett. 113, 304–306PubMedCrossRefGoogle Scholar
  9. 9.
    Riccio, P., Aquila, H., Klingenberg, M. (1975) FEBS Lett. 56, 133–138PubMedCrossRefGoogle Scholar
  10. 10.
    Lin, C.S., Klingenberg, M. (1980) FEBS Lett. 113, 299–303PubMedCrossRefGoogle Scholar
  11. 11.
    Saraste, M., Walker, J.E. (1982) FEBS Lett 144, 250–254PubMedCrossRefGoogle Scholar
  12. 12.
    Runswick, M.J., Powell, S.J., Nyren, P., Walker, J.E. (1987) EMBO J. 6, 1367–1373PubMedGoogle Scholar
  13. 13.
    Klingenberg, M. (1989) Arch. Biochem. Biophys. 270, 1–14PubMedCrossRefGoogle Scholar
  14. 14.
    Dalbon, P., Brandolin, G., Boulay, F., Hoppe, J., Vignais, P.V.(1988) Biochemistry 27, 5141–5149PubMedCrossRefGoogle Scholar
  15. 15.
    Mayinger, P., Winkler, E., Klingenberg, M. (1989) FEBS Lett. 244, 421–426PubMedCrossRefGoogle Scholar
  16. 16.
    Bogner, W., Aquila, H., Klingenberg, M. (1986) Eur. J. Biochem. 161, 611–620PubMedCrossRefGoogle Scholar
  17. 17.
    Eiermann, W., Aquila, H., Klingenberg, M. (1977) FEBS Lett. 74, 209–214PubMedCrossRefGoogle Scholar
  18. 18.
    Schultheiss, H.P., Klingenberg, M. (1984) Eur. J. Biochem. 143, 599–605PubMedCrossRefGoogle Scholar
  19. 19.
    Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S., Baserga, R. (1987) J. Biol. Chem. 262, 4355–4359PubMedGoogle Scholar
  20. 20.
    Neckelmann, N., Li, K., Wade, R.P., Schuster, R., Wallace, D.C. (1987) Proc. Natl. Acad. Sci. USA 84, 7580–7584PubMedCrossRefGoogle Scholar
  21. 21.
    Houldsworth, J., Attardi, G. (1988) Proc. Natl. Acad. Sci. USA 84, 377–381CrossRefGoogle Scholar
  22. 22.
    Lawson, J.E., Douglas, M.G. (1988) J. Biol. Chem. 263, 14812–14818PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Martin Klingenberg
    • 1
  1. 1.Institute for Physical BiochemistryUniversity of MunichMunich 2Germany

Personalised recommendations