Bioenergetics pp 217-225 | Cite as

Structure and Chemical Modification of Pig Gastric (H++K+)-ATPase

  • Masatomo Maeda
  • Shigehiko Tamura
  • Masamitsu Futai


This paper summarizes our recent studies on pig gastric (H+ + K+)-ATPase. The amino acid sequence (from cDNA) of the pig enzyme was closely homologous to that of the rat enzyme. Functionally important amino acid residues for catalysis and ion translocation are pointed out. Chemical modification with pyridoxal 5′-phosphate suggested that Lys-497 may be located in the catalytic site or in its vicinity. DCCD inhibited the enzyme, possibly by cross-linking amino acid residues in the hydrophobic region of the enzyme.


Amino Acid Residue ATPase Activity ATPase Assay Membrane Span Region Hydropathy Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Faller, L., Jackson, R., Molinowska, D., Mukidjam, E., Rabon, E., Saccomani, G., Sachs, G., and Smolka, A. (1982) Ann. N.Y. Acad. Sci. 402, 146–163.PubMedCrossRefGoogle Scholar
  2. 2.
    Sachs, G., Chang, H. H., Rabon, E., Schackman, R., Lewin, M., and Saccomani, G. (1976) J. Biol. Chem. 251, 7690–7698.PubMedGoogle Scholar
  3. 3.
    Wallmark, B., Stewart, H. B., Rabon, E., Saccomani, G., and Sachs, G. (1980) J. Biol. Chem. 255, 5313–5319.PubMedGoogle Scholar
  4. 4.
    Ray, T. K., and Forte, J. G. (1976) Biochim. Biophys. Acta 443, 451–467.PubMedCrossRefGoogle Scholar
  5. 5.
    Saccomani, G., Barcellona, M. L., and Sachs, G. (1981) J. Biol. Chem. 256, 12405–12410.PubMedGoogle Scholar
  6. 6.
    Maeda, M., Ishizaki, J., and Futai, M. (1988) Biochem. Biophys. Res. Commun. 157, 203–209.PubMedCrossRefGoogle Scholar
  7. 7.
    Maeda, M., Tagaya, M., and Futai, M. (1988) J. Biol. Chem. 263, 3652–3656.PubMedGoogle Scholar
  8. 8.
    Tamura, S., Tagaya, M., Maeda, M., and Futai, M. (1989) J. Biol. Chem. 264, 8580–8584.PubMedGoogle Scholar
  9. 9.
    Sussman, M. R., Strickler, J. E., Hager K. M., and Slayman, C. W. (1983) J. Biol. Chem. 262, 4569–4573.Google Scholar
  10. 10.
    Futai, M., and Kanazawa, H. (1983) Microbiol. Rev. 47, 285–312.PubMedGoogle Scholar
  11. 11.
    Shull, G. E., and Lingrel, J. B. (1986) J. Biol. Chem. 26l, 16788–16791.Google Scholar
  12. 12.
    Maeda, M., Ohshiman, K., Tamura, S., and Futai, M., submitted.Google Scholar
  13. 13.
    Ovchinnikov, Y. A., Modyanov, N. N., Broude, N. E., Petrukhin, K. E., Grishin, A. V., Arzamazova, N. M., Aldanova, N. A., Monastyrskaya, G. S., and Sverdlov, E. D. (1986) FEBS Lett. 201, 237–245.PubMedCrossRefGoogle Scholar
  14. 14.
    MacLennan, D. H., Brandi, C. J., Korczak, B., and Green, N. M. (1985) Nature 316, 696–700.PubMedCrossRefGoogle Scholar
  15. 15.
    Krebs, E. G., and Beavo, J. A. (1979) Ann. Rev. Biochem. 48, 923–959.PubMedCrossRefGoogle Scholar
  16. 16.
    Ueda, S., Oiki, S., and Okada, Y. (1986) Biomed. Res. 2, 105–108.Google Scholar
  17. 17.
    Noumi, T., Maeda, M., and Futai, M. (1988) J. Biol. Chem. 263, 8765–8770.PubMedGoogle Scholar
  18. 18.
    Hesse, J. E., Wieczorek, L., Altendorf, K., Reicin, A. S., Roruv, E., and Epstein, W. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4746–4750.PubMedCrossRefGoogle Scholar
  19. 19.
    Solioz, M., Mathews, S., and Fürst, P. (1987) J. Biol. Chem. 262, 7358–7362.PubMedGoogle Scholar
  20. 20.
    Farley, R. A., and Faller, L. D. (1985) J. Biol.. Chem. 260, 3899–3901.PubMedGoogle Scholar
  21. 21.
    Ohta, T., Nagano, K., and Yoshida, M. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2071–2075.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamamoto, H., Tagaya, M., Fukui, T., and Kawakita, M. (1988) J. Biochem. (Tokyo) 103, 452–457.Google Scholar
  23. 23.
    Shull, G. E., Shwartz, A., and Lingrel, J. B. (1985) Nature 316, 691–695.PubMedCrossRefGoogle Scholar
  24. 24.
    Shull, G. E., Greeb, J., and Lingrel, J. B. (1986) Biochemistry 25, 8125–8132.PubMedCrossRefGoogle Scholar
  25. 25.
    Kawakami, K., Ohta, T., Nojima, H., and Nagano, K. (1986) J. Biochem. (Tokyo) 100, 389–397.Google Scholar
  26. 26.
    Takeyasu, K., Tamkun, M. M., Renand, K. J., and Fambrough, D. M. (1988) J. Biol. Chem. 263, 4347–4354.PubMedGoogle Scholar
  27. 27.
    Kawakami, K., Noguchi, S., Noda, K., Takahashi, H., Ohta, T., Kawamura, M., Nojima, H., Nagano, K., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1985) Nature 316, 733–736.PubMedCrossRefGoogle Scholar
  28. 28.
    Shull, G. E., and Greeb, J. (1988) J. Biol. Chem. 263, 8646–8657.PubMedGoogle Scholar
  29. 29.
    Verma, A. K., Filoteo, A. G., Stanford, D. R., Wieben, E. D., Penniston, J. T., Strehler, E. F., Fisher, R., Heim, R., Vogel, G., Mathews, S., Strehler-Page, M.-A., James, P., Vorherr, T., Krebs, J., and Carafoli, E. (1988) J. Biol. Chem. 263, 14152–14159.PubMedGoogle Scholar
  30. 30.
    Taylor, S. S., and Buechler, J. A. (1989) Biochemistry 28, 2065–2070.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Masatomo Maeda
    • 1
  • Shigehiko Tamura
    • 1
  • Masamitsu Futai
    • 1
  1. 1.Department of Organic Chemistry and Biochemistry Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, Osaka 567Japan

Personalised recommendations