Bioenergetics pp 191-204 | Cite as

Molecular Organization and Regulation of the Protonmotive System of Mammalian ATP Synthase

  • S. Papa
  • F. Guerrieri
  • F. Zanotti


In bacteria the H+ translocating membrane sector (FO) of the F0, F1 H+ ATP synthase is composed of three subunits (a, b, and c of the E. Coli enzyme (1). In mitochondria more than three proteins appear to constitute the Fo and stalk sectors (1), which are involved in H+ conduction and/or coupling of H+ translocation to the catalytic process in the F1 moiety (Table 1) (2,3). Two of these are the products of the mitochondrial genoma:the ATPase 6, homologous to subunit a of E. Coli and likely to be involved as this (4–7) in H+ conduction, and A6L in mammals (aapl in yeast), whose function is as yet unknown (1). Other 5 proteins have been identified in the mammalian enzyme which are encoded by nuclear genes (8,9). These include subunit c which is directly involved in H+ conduction (10,11), OSCP and F6 which contribute to connection of F1 with FO (1).


ATPase Activity Proton Conduction Trypsin Digestion Particle Protein Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Senior, A.E. (1988) Physiological Reviews 68, 177–232PubMedGoogle Scholar
  2. 2.
    Papa, S. (1989) in “Organelles of Eukaryotic Cells:Molecular Structure and Interactions” (Tager, J.M., Guerrieri, F., Azzi, A. and Papa, S. eds.) Plenum Press, N.Y. (in press).Google Scholar
  3. 3.
    Papa, S., Guerrieri, F., Zanotti, F., Houstek, J., Capozza, G. and Ronchi, S., (1988) in “Molecular Basis of Biomembrane Transport” (Palmieri, F. and Quagliariello, E.,eds.) Elsevier Science Publisher BV, Amsterdam, pp.249–259.Google Scholar
  4. 4.
    Von Meyenburg, K., Jørgensen, B.B., Michelsen, O., Sørensen, L. and McCarty, J.E.C. (1986) EMBO Journal 4, 2357–2362.Google Scholar
  5. 5.
    Lightowlers, R.N., Howitt, S.M., Hetch, L. and Cox, G.B. (1988) Biochim. Biophys.Acta 933, 241–248.PubMedCrossRefGoogle Scholar
  6. 6.
    Eya, S., Noumit, P., Maede, M. and Futai, M. (1988) The Journal of Biol. Chem.263, 10056–10062.Google Scholar
  7. 7.
    Paule, C.R. and Fillingame, R.H. (1989),Arch. of Biochem. and Biophys. 274, 270–284.CrossRefGoogle Scholar
  8. 8.
    Walker, J.E., Runswick, M.J. and Poulter, L. (1987) J. Mol. Biol.197, 89–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Walker, J.E., Gey, N.J., Powell, S.J., Kostina, M. and Dyer, M.R.(1987) Biochemistry 26, 8613–8619.PubMedCrossRefGoogle Scholar
  10. 10.
    Hoppe, J. and Sebald, W. (1984) Biochim.Biophys. Acta 768, 1–22.PubMedGoogle Scholar
  11. 11.
    Kopecky, J., Guerrieri, F., and Papa, S. (1983) Eur. J. Biochem.131, 17–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Guerrieri, F., Capozza, G., Houstek, J., Zanotti, F., Colaianni, G., Jirillo, E. and Papa, S. (1989) FENS Lett.250, 60–66.CrossRefGoogle Scholar
  13. 13.
    Houstek, J., Svoboda, P., Kopecky, J., Kuzela, S. and Drahota, Z.(1981) Biochim.Biophys.Acta 634, 331–339.PubMedCrossRefGoogle Scholar
  14. 14.
    Houstek, J., Kopecky, J., Zanotti, F., Guerrieri, F., Jirillo, E., Capoz za, G. and Papa, S. (1988) Eur. J. Biochem.173, 1–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Zanotti, F., Guerrieri, F., Capozza, G., Houstek, J., Ronchi, S. and Papa, S. (1988) FEBS Lett.237, 9–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Fearnley, I.M. and Walker, J.E. (1986) EMBO Journal 5, 2003–2008.PubMedGoogle Scholar
  17. 17.
    Pullman, M.E. and Monroy, G.C., (1963), J. Biol. Chem.238, 3762–3769.PubMedGoogle Scholar
  18. 18.
    Guerrieri, F., Scarfò, R., Zanotti, F., Che, Y.W. and Papa, S. (1987) FEBS Lett.213, 67–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Guerrieri, F., Zanotti, F., Che, Y.W., Scarfò, R. and Papa, S. (1987) Biochim.Biophys.Acta 892, 284–293.PubMedCrossRefGoogle Scholar
  20. 20.
    Racker, E., Horstman, L.L., Kling, D. and Fesseden-Raden, J.M. (1969) J. Biol. Chem.244, 6668–6674.PubMedGoogle Scholar
  21. 21.
    Kanner, B.I., Serrano, M., Kadrach, M.A. and Racker, E. (1976) Biochem. Biophys.Res.Comm.69, 1050–1056.PubMedCrossRefGoogle Scholar
  22. 22.
    Papa, S., Guerrieri, F., Zanotti, F., Houstek, J., Capozza, G., and Ronchi, S. (1989) FEBS Lett.249, 62–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Zanotti, F., Guerrieri, F., Scarfò, R., Berden, J. and Papa, S. (1985), Biochem.Biophys.Res.Comm.132, 985–990.PubMedCrossRefGoogle Scholar
  24. 24.
    Mac Lennan, D.H. and Tzagaloff, A. (1968) Biochemistry, 7, 1603–1610CrossRefGoogle Scholar
  25. 25.
    Guerrieri, F. and Papa, S. (1982) Eur. J. Biochem.128, 9–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Zanotti, F., Guerrieri, F., Che, Y.W., Scarfò, R. and Papa, S. (1987) Eur. J. Biochel.164, 517–523.CrossRefGoogle Scholar
  27. 27.
    Sanadi, D.R. (1982) Biochim.Biophys.Acta 683, 39–56Google Scholar
  28. 28.
    Pansini, A., Guerrieri, F. and Papa, S. (1978) Eur. J. Biochem.92, 544–551.CrossRefGoogle Scholar
  29. 29.
    Perlin, D.S., Cox, D.N. and Senior, A.E. (1983), J. Biol. Chem.258, 9713–9800.Google Scholar
  30. 30.
    Ario, J.P., Klionsky, J. and Simoni, R.D. (1985) J. Biol. Chem.260, 11207–11215.Google Scholar
  31. 31.
    Buckle, M., Guerrieri, F. and Papa, S. (1985), FEBS Lett.188,345–351.PubMedCrossRefGoogle Scholar
  32. 32.
    Buckle, M., Guerrieri, F., Pazienza, A. and Papa, S. (1986) Eur. J. Biochem. 155, 439–445.PubMedCrossRefGoogle Scholar
  33. 33.
    Uriel, J. (1979) Advances Cancer Res.29, 127–174.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Papa
    • 1
  • F. Guerrieri
    • 1
  • F. Zanotti
    • 1
  1. 1.Institute of Medical Biochemistry and Chemistry and Centre for the Study of Mitochondria and Energy MetabolismC.N.R. University of BariBariItaly

Personalised recommendations