Bioenergetics pp 181-190 | Cite as

Do Hydrogen Ions Serve as Bioenergetic Messengers in Yeast?

  • Arnošt Kotyk


It was in the late fifties1 and early sixties2 that the idea dawned upon the scientific community that cations, in particular sodium ions, can form a concentration-plus-potential gradient across cell membranes which can be used for driving the (secondary) transport of amino acids and sugars in the intestinal mucosa3 and renal tubules4 as well as in ascites cells.5 The “sodium pump”, subsequently shown to be identical with the Na,K-adenosinetriphosphatase6,7 was the magic wand of many animal physiologists for years to come, helping them to explain the conversions of energy taking place in animal cell membranes.


Heavy Water Accumulation Ratio Suspension Density Magic Wand Yeast Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Riklis and J. H. Quastel, Effects of cations on sugar absorption by isolated surviving guinea pig intestine, Can. J. Biochem. Physiol. 36:347 (1958).PubMedCrossRefGoogle Scholar
  2. 2.
    R. K. Crane, Hypothesis for the mechanism of intestinal active transport of sugars, Fed. Proc. 21:892 (1962).Google Scholar
  3. 3.
    R. K. Crane, Na+-dependent transport in the intestine and other animal tissues, Fed. Proc. 24:1000 (1965).PubMedGoogle Scholar
  4. 4.
    A. Kleinzeller and A. Kotyk, Cations and transport of galactose in kidney-cortex slices, Biochim. Biophys. Acta 54:367 (1961).PubMedCrossRefGoogle Scholar
  5. 5.
    J. A. Schafer and E. Heinz, The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells, Biochim. Biophys. Acta 249:15 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    J. C. Skou, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394 (1957).PubMedCrossRefGoogle Scholar
  7. 7.
    R. L. Post, C. R. Merritt, C. R. Kinsolving, and C. D. Albright, Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte, J. Biol. Chem. 235:1796 (1960).PubMedGoogle Scholar
  8. 8.
    A. Kleinzeller and A. Kotyk (eds), “Membrane Transport and Metabolism”, Publ. House Czechosl. Acad. Sci., Prague (1961).Google Scholar
  9. 9.
    P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature (London) 191:144 (1961).CrossRefGoogle Scholar
  10. 10.
    F. M. Harold, Conservation and transformation of energy by bacterial membranes, Bacter. Rev. 36:172 (1972).Google Scholar
  11. 11.
    R. A. Dilley, Coupling of ion and electron transport in chloroplasts, Curr. Topics Bioenerget. 4:237 (1971).Google Scholar
  12. 12.
    W. Kundig and S. Roseman, Sugar transport. Isolation of a phosphotransterase system from E. coli, J. Biol. Chem. 246:1393 (1971).PubMedGoogle Scholar
  13. 13.
    E. Prossnitz, A. Gee, and G. Ferro-Luzzi Ames, Reconstitution of the histidine periplasmic transport system in membrane vesicles. J. Biol. Chem. 264:5006 (1989).PubMedGoogle Scholar
  14. 14.
    V. P. Skulachev, “Membrane Bioenergetics”, Springer, Berlin (1988).CrossRefGoogle Scholar
  15. 15.
    P. A. Dibrov, R. L. Lazarova, V. P. Skulachev, and M. L. Verkhovskaya, The sodium cycle. Na+-dependent oxidative phosphorylation in Vibrio alginolyticus, Biochim. Biophys. Acta 850:458 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Hirota, Y. Imae, Na+-driven flagellar motors of an alkaliphilic Bacillus strain YN-1, J. Biol. Chem. 258:10577 (1983).PubMedGoogle Scholar
  17. 17.
    P. D. Boyer, Bioenergetic coupling to protonmotive force: Should we be considering hydronium ion coordination and not group protonation? Trends Biochem. Sci. 13:5 (1989).CrossRefGoogle Scholar
  18. 18.
    G. Semenza, M. Kessler, M. Hosang, J. Weber, and U. Schmidt, Biochemistry of the Na+,D-glucose cotransporter of the small-intestinal brush-border membrane, Biochim. Biophys. Acta 779:343 (1984).PubMedGoogle Scholar
  19. 19.
    H. R. Kaback, Proton electrochemical gradients and active transport: The saga of lac permease, Ann. N. Y. Acad. Sci. 456:291 (1986).CrossRefGoogle Scholar
  20. 20.
    W. Wilbrandt, Secretion and transport of non-electrolytes, Symp. Soc. Exptl. Biol. 8:136 (1954).Google Scholar
  21. 21.
    W. D. Stein, An algorithm for writing down flux equations for carrier kinetics, and its application to co-transport, J. Theor. Biol. 62: 467 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Kotyk, Coupling of secondary active transport with \(\Delta \tilde \mu _{H^ + } \), J. Bioenerget. Biomembr. 15:307 (1983).CrossRefGoogle Scholar
  23. 23.
    A. Kotyk, Basic kinetics of membrane transport, in “Structure and Properties of Cell Membranes”, Gh. Benga, ed., CRC Press, Boca Raton (1985).Google Scholar
  24. 24.
    D. Sanders, U.-P. Hansen, D. Gradmann, and C. L. Slayman, Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters, J. Membrane Biol. 77:123 (1984).CrossRefGoogle Scholar
  25. 25.
    M. Höfer, H. Huh, and A. Künemund, Membrane potential and cation permeability. A study with a nystatin-resistant mutant of Rhodotorula gracilis (Rhodosporidium toruloides), Biochem. Biophys. Acta 735: 211 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Kotyk and J. Horák, Effects of pH and of temperature on saturable transport processes, in “Water and Ions in Biological Systems”, A. Pullman, V. Vasilescu, and L. Packer, eds, Plenum Press, New York (1985).Google Scholar
  27. 27.
    A. Kotyk and D. Michaljaničová, Suspension density and accumulation ratio of sugars and amino acids in yeasts, Folia Microbiol. 32:459 (1987).CrossRefGoogle Scholar
  28. 28.
    J. Slavik, Intracellular pH topography: Determination by a fluorescent probe, FEBS Lett. 156:227 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Slavik and A. Kotyk, Intracellular pH distribution and transmembrane pH profile of yeast cells, Biochim. Biophys. Acta 766:679 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    K. Sigler and M. Opekarová, CO2-dependent K+ efflux in yeast utilizing endogenous substrates, Cell. Mol. Biol. 31:195 (1985).PubMedGoogle Scholar
  31. 31.
    A. Kotyk, Heavy water and membrane transport in yeast, in “Structure, Function and Biogenesis of Energy Transfer Systems”, Elsevier, Amsterdam (1989).Google Scholar
  32. 32.
    A. Kotyk, Critique of coupled vs. noncoupled transport of nonelectrolytes, in “Fifth Winter School on Biophysics of Membrane Transport” (J. Kuczera, J. Gabrielska, and S. Przestalski, eds), Agricultural Academy, Wroclaw (1979).Google Scholar
  33. 33.
    H. V. Westerhoff, B. Andrea-Melandri, G. Venturoli, G. F. Azzone, and D. B. Kell, A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units, Biochem. Biophys. Acta 768:257 (1984).PubMedGoogle Scholar
  34. 34.
    J. Slavík, P. Pauček, M. Souček, and A. Kotyk, Application of fluorescent sugar analogues in the study of monosaccharide transport in yeast, FEBS Lett. in press (1989).Google Scholar
  35. 35.
    H. Moor and K. Muhlethaler, Fine structure in frozen-etched yeast cells, J. Cell Biol. 17:609 (1963).PubMedCrossRefGoogle Scholar
  36. 36.
    A. Kotyk and R. Metlička, Conductometry as a tool for studying ion transport in suspensions, Studia Biophys. 110:205 (1986).Google Scholar
  37. 37.
    B. Aldermann and M. Höfer, The active transport of monosaccharides by the yeast Metschnikowia reukaufii: Evidence for an electrochemical gradient of H+ across the cell membrane, Exptl. Mycol. 5:121(1981)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Arnošt Kotyk
    • 1
  1. 1.Department of Membrane Transport Institute of PhysiologyCzechoslovak Academy of SciencesPragueCzechoslovakia

Personalised recommendations