Bioenergetics pp 163-170 | Cite as

Which Electron-Transferring Reactions in the Respiratory Chain Contribute to the Energy Conservation?

  • E. C. Slater


As starting point for this essay, it is assumed that the energy conserving act coupled with electron transfer in the mitochondrial respiratory chain is the transfer of negative charges from a specific site near the outer face of the inner membrane to a site near the inner face, and/or the transfer of positive charges in the opposite direction, resulting in a charge separation, negative inside. Little is known about which reactions are involved in Site-1 phosphorylation. Present evidence is in favour of the view that the only energy-conserving reactions in Site-2 phosphorylation is the transfer of electrons from ubisemiquinone, bound near the outer membrane, through cytochrome b to ubiquinone bound to the inner face. There is no electrogenic transfer of protons. Wikström's data indicates that in Site 3, about 20% of the charge transfer is due to electron transfer from ferrocytochrome c bound to the outer face to a binuclear centre in the middle of the membrane and 30% to the transfer of protons, required for the reduction of O2 to H2O, from the inner compartment to the centre. The remaining 50% is accounted for by the so-called “proton pump”, the nature of which is still obscure.


Oxidative Phosphorylation Charge Separation Outer Face Chemiosmotic Theory Semiquinone Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slater, E.C.(1966) in Comprehensive Biochemistry, Vol.14, M. Florkin and E. M. Stotz, ed., Elsevier, pp. 327–396.Google Scholar
  2. 2.
    Slater, E.C.(1970) in Electron Transport and Energy Conservation, J.M. Tager, S. Papa, E. Quagliariello and E.C. Slater, ed., Adriatica Editrice, Bari, pp.363–369.Google Scholar
  3. 3.
    Hatefi, Y.(1966) in Comprehensive Biochemistry, Vol.14, M. Florkin and E.M. Stotz, ed., Elsevier, pp. 199–231.Google Scholar
  4. 4.
    Kagawa, Y. and Racker, E.F.(1966) J. Biol. Chem. 241, 2461–2466.PubMedGoogle Scholar
  5. 5.
    Mitchell, P.(1976) J. Theor. Biol. 62, 327–367.PubMedCrossRefGoogle Scholar
  6. 6.
    De Vries, S. (1986) J. Bioenerg. Biomembr. 18, 195–224.PubMedCrossRefGoogle Scholar
  7. 7.
    Robertson, D.E. and Dutton, P.L.(1988) Biochim. Biophys. Acta 935, 273–291.PubMedCrossRefGoogle Scholar
  8. 8.
    Hope, A.B. and Rich, P.R.(1989) Biochim. Biophys. Acta 975, 96–103.CrossRefGoogle Scholar
  9. 9.
    Mitchell, P.(1966), Chemiosmotic Coupling in Oxidative Phosphorylation, Glynn Research Ltd., Bodmin.Google Scholar
  10. 10.
    Nielsen, S.O. and Lehninger, A.L.(1954) J. Amer. Chem. Soc. 76, 3860.CrossRefGoogle Scholar
  11. 11.
    Chamalaun, R.A.F.M. and Tager, J.M.(1969) Biochim. Biophys. Acta 180, 204–206.PubMedCrossRefGoogle Scholar
  12. 12.
    Kagawa, Y.(1984) in Bioenergetics, New Comprehensive Biochemistry, Vol. 9, L. Ernster, ed., Elsevier, pp. 149–186.Google Scholar
  13. 13.
    LaNoue, K.F., Mizani, S.M. and Klingenberg, M.(1978) J. Biol. Chem. 253, 191–198.PubMedGoogle Scholar
  14. 14.
    Wikström, M.(1977) Nature 266, 271–273.PubMedCrossRefGoogle Scholar
  15. 15.
    Chance, B. and Williams, G.R.(1956) Adv. Enzymol. 17, 65–134.Google Scholar
  16. 16.
    Chance, B., Holmes, W., Higgins, J. and Connelly, J.M.(1958) Nature 182, 1190–1193.PubMedCrossRefGoogle Scholar
  17. 17.
    Muraoka, S. and Slater, E.C.(1969) Biochim. Biophys. Acta 180, 227–236.PubMedCrossRefGoogle Scholar
  18. 18.
    Keilin, D. and Hartree, E.F.(1939) Proc. Roy. Soc. B 127, 167–191.CrossRefGoogle Scholar
  19. 19.
    Wikström, M.(1987) Chemica Scripta 27B, 53–58.Google Scholar
  20. 20.
    Chance, B., Saranio, C. and Leigh, J.S., Jr.(1975) J. Biol. Chem. 250, 9226–9237.PubMedGoogle Scholar
  21. 21.
    Wikström, M.(1988) Chemica Scripta 28A, 71–74.Google Scholar
  22. 22.
    Hinkle, P.C. and Mitchell, P.(1970) J. Bioenerg. 1, 45–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Wikström, M.(1989) Nature 338, 776–778.PubMedCrossRefGoogle Scholar
  24. 24.
    Greengard, P., Minnaert, K., Slater, E.C. and Betel, I.(1959) Biochem. J. 73, 637–646.PubMedGoogle Scholar
  25. 25.
    Hinkle, P.C. and Yu, M.L.(1979) J. Biol. Chem. 254, 2450–2455.PubMedGoogle Scholar
  26. 26.
    van Dam, K., Westerhoff, H.V., Krab, K. and Arents, J.C.(1980) Biochim. Biophys. Acta 591, 240–250.PubMedCrossRefGoogle Scholar
  27. 27.
    Beavis, A.D. and Lehninger, A.L.(1986) Eur. J. Biochem. 158, 315–322.PubMedCrossRefGoogle Scholar
  28. 28.
    Lemasters, J.J.(1984) J. Biol. Chem. 259, 13123–13130.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • E. C. Slater
    • 1
  1. 1.Department of BiochemistryUniversity of SouthamptonSouthamptonEngland

Personalised recommendations