Skip to main content

Which Electron-Transferring Reactions in the Respiratory Chain Contribute to the Energy Conservation?

  • Chapter
Bioenergetics
  • 141 Accesses

Summary

As starting point for this essay, it is assumed that the energy conserving act coupled with electron transfer in the mitochondrial respiratory chain is the transfer of negative charges from a specific site near the outer face of the inner membrane to a site near the inner face, and/or the transfer of positive charges in the opposite direction, resulting in a charge separation, negative inside. Little is known about which reactions are involved in Site-1 phosphorylation. Present evidence is in favour of the view that the only energy-conserving reactions in Site-2 phosphorylation is the transfer of electrons from ubisemiquinone, bound near the outer membrane, through cytochrome b to ubiquinone bound to the inner face. There is no electrogenic transfer of protons. Wikström's data indicates that in Site 3, about 20% of the charge transfer is due to electron transfer from ferrocytochrome c bound to the outer face to a binuclear centre in the middle of the membrane and 30% to the transfer of protons, required for the reduction of O2 to H2O, from the inner compartment to the centre. The remaining 50% is accounted for by the so-called “proton pump”, the nature of which is still obscure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slater, E.C.(1966) in Comprehensive Biochemistry, Vol.14, M. Florkin and E. M. Stotz, ed., Elsevier, pp. 327–396.

    Google Scholar 

  2. Slater, E.C.(1970) in Electron Transport and Energy Conservation, J.M. Tager, S. Papa, E. Quagliariello and E.C. Slater, ed., Adriatica Editrice, Bari, pp.363–369.

    Google Scholar 

  3. Hatefi, Y.(1966) in Comprehensive Biochemistry, Vol.14, M. Florkin and E.M. Stotz, ed., Elsevier, pp. 199–231.

    Google Scholar 

  4. Kagawa, Y. and Racker, E.F.(1966) J. Biol. Chem. 241, 2461–2466.

    PubMed  CAS  Google Scholar 

  5. Mitchell, P.(1976) J. Theor. Biol. 62, 327–367.

    Article  PubMed  CAS  Google Scholar 

  6. De Vries, S. (1986) J. Bioenerg. Biomembr. 18, 195–224.

    Article  PubMed  Google Scholar 

  7. Robertson, D.E. and Dutton, P.L.(1988) Biochim. Biophys. Acta 935, 273–291.

    Article  PubMed  CAS  Google Scholar 

  8. Hope, A.B. and Rich, P.R.(1989) Biochim. Biophys. Acta 975, 96–103.

    Article  CAS  Google Scholar 

  9. Mitchell, P.(1966), Chemiosmotic Coupling in Oxidative Phosphorylation, Glynn Research Ltd., Bodmin.

    Google Scholar 

  10. Nielsen, S.O. and Lehninger, A.L.(1954) J. Amer. Chem. Soc. 76, 3860.

    Article  CAS  Google Scholar 

  11. Chamalaun, R.A.F.M. and Tager, J.M.(1969) Biochim. Biophys. Acta 180, 204–206.

    Article  PubMed  CAS  Google Scholar 

  12. Kagawa, Y.(1984) in Bioenergetics, New Comprehensive Biochemistry, Vol. 9, L. Ernster, ed., Elsevier, pp. 149–186.

    Google Scholar 

  13. LaNoue, K.F., Mizani, S.M. and Klingenberg, M.(1978) J. Biol. Chem. 253, 191–198.

    PubMed  CAS  Google Scholar 

  14. Wikström, M.(1977) Nature 266, 271–273.

    Article  PubMed  Google Scholar 

  15. Chance, B. and Williams, G.R.(1956) Adv. Enzymol. 17, 65–134.

    CAS  Google Scholar 

  16. Chance, B., Holmes, W., Higgins, J. and Connelly, J.M.(1958) Nature 182, 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  17. Muraoka, S. and Slater, E.C.(1969) Biochim. Biophys. Acta 180, 227–236.

    Article  PubMed  CAS  Google Scholar 

  18. Keilin, D. and Hartree, E.F.(1939) Proc. Roy. Soc. B 127, 167–191.

    Article  CAS  Google Scholar 

  19. Wikström, M.(1987) Chemica Scripta 27B, 53–58.

    Google Scholar 

  20. Chance, B., Saranio, C. and Leigh, J.S., Jr.(1975) J. Biol. Chem. 250, 9226–9237.

    PubMed  CAS  Google Scholar 

  21. Wikström, M.(1988) Chemica Scripta 28A, 71–74.

    Google Scholar 

  22. Hinkle, P.C. and Mitchell, P.(1970) J. Bioenerg. 1, 45–60.

    Article  PubMed  CAS  Google Scholar 

  23. Wikström, M.(1989) Nature 338, 776–778.

    Article  PubMed  Google Scholar 

  24. Greengard, P., Minnaert, K., Slater, E.C. and Betel, I.(1959) Biochem. J. 73, 637–646.

    PubMed  CAS  Google Scholar 

  25. Hinkle, P.C. and Yu, M.L.(1979) J. Biol. Chem. 254, 2450–2455.

    PubMed  CAS  Google Scholar 

  26. van Dam, K., Westerhoff, H.V., Krab, K. and Arents, J.C.(1980) Biochim. Biophys. Acta 591, 240–250.

    Article  PubMed  Google Scholar 

  27. Beavis, A.D. and Lehninger, A.L.(1986) Eur. J. Biochem. 158, 315–322.

    Article  PubMed  CAS  Google Scholar 

  28. Lemasters, J.J.(1984) J. Biol. Chem. 259, 13123–13130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Slater, E.C. (1990). Which Electron-Transferring Reactions in the Respiratory Chain Contribute to the Energy Conservation?. In: Kim, C.H., Ozawa, T. (eds) Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5835-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5835-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5837-4

  • Online ISBN: 978-1-4684-5835-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics