Bioenergetics pp 147-154 | Cite as

Subunit I is the Catalytic Center of P. Denitrificans Cytochrome C Oxidase

  • Michele Müller
  • Angelo Azzi


Cytochrome c oxidases of either mammalian or bacterial origin are membrane bound, multisubunit complexes responsible for catalyzing the electron transfer from ferrocytochrome c to dioxygen.1,2 In most cases, a vectorial electrogenic proton translocation has been shown to be coupled to this process. The number of subunits present in eukaryotes is larger (up to 13 in mammals) than in prokaryotes that contain two to three subunits only.3,4 The three subunits present in several bacteria are highly homologous to the three largest subunits in eukaryotes. Bacteria have been therefore used as a simple systems to understand the role of quaternary structure on the function of the enzyme. The oxidases of some bacteria, such as P. denitrificans, although they have at least three genes coding for the three mentioned polypeptides,5 are normally isolated with two subunits only.6,7 Such a characteristics has simplified their study and has permitted to establish that electron and proton transfer properties of the two subunits oxidase of P. denitrificans are very similar to those of the more complex mammalian enzyme.8,9,10


Copper Atom Bovine Heart Pseudomonas Stutzeri Porphyrin Iron Blue Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Azzi, K. Bill, R. Bolli, R. P. Casey, K. A. Nalecz, and P. O’Shea, Molecular aspects of the structure-function relationship in cytochrome c oxidase, in: “Structure and Properties of Cell Membranes,” G. Benga, ed., Vol. 2, CRC Press Inc., Boca Raton, FL (1985).Google Scholar
  2. 2.
    M. Wikström, M. Saraste, and T. Penttilä, Relationship between structure and function in cytochrome oxidase, in: “The Enzymes of Biological Membranes,” A.N. Martonosi, ed., Vol. 4, Plenum Press, New York, NY (1985).Google Scholar
  3. 3.
    J. A. Fee, D. Kuila, M. W. Mather, and T. Yoshida, Respiratory proteins from extremely thermophilic, aerobic bacteria, Biochem. Biophys. Acta 853:153 (1986).PubMedGoogle Scholar
  4. 4.
    B. Ludwig, Cytochrome c oxidase in prokaryotes, FEMS Microbiol. Review 46:41 (1987).CrossRefGoogle Scholar
  5. 5.
    M. Raitio, T. Jalli, and M. Saraste, Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans, EMBO J. 6:2825 (1987).PubMedGoogle Scholar
  6. 6.
    B. Ludwig, and G. Schatz, A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus denitrificans, Proc. Natl. Acad. Sci. USA 77:196 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    B. Ludwig, Cytochrome c oxidase from Paracoccus denitrificans, Methods Enzymol. 126:153 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    J. K. V. Reichhardt, and Q. H. Gibson, Turnover of cytochrome c oxidase from Paracoccus denitrificans, J. Biol. Chem. 258:1504 (1983).Google Scholar
  9. 9.
    M. Solioz, E. Carafoli, and B. Ludwig, The cytochrome c oxidase of Paracoccus denitrificans pumps proton in a reconstituted system, J. Bioenerg. Biomembr. 257:1579 (1982).Google Scholar
  10. 10.
    R. Bolli, K. A. Nalecz, and A. Azzi, Cytochrome c oxidase from Paracoccus denitrificans in Triton X-100: aggregation state and kinetics, J. Bioenerg. Biomembr. 18:277 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    D. B. Winter, W. J. Bruynickx, F. G. Foulke, N. P. Grinich, and H. S. Mason, Location of heme a on subunits I and II and copper on subunit II of cytochrome c oxidase, J. Biol. Chem. 255:11408 (1980).PubMedGoogle Scholar
  12. 12.
    M. Corbley, and A. Azzi, Resolution of bovine heart cytochrome c oxidase into smaller complexes by controlled subunit denaturation, Eur. J. Biochem. 139:535 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Benne, J. Van Den Burg, J. P. J. Brakenhoff, P. Sloof, J. H. VanBoom, and M. C. Tromp, Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA, Cell 46:819 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    T. H. Stevens, C. T. Martin, H. Wang, G. W. Brudvig, C. P. Scholes, and S. I. Chan, The nature of CuA in cytochrome c oxidase. J. Biol. Chem. 257:12106 (1982).PubMedGoogle Scholar
  15. 15.
    P. M. Li, J. Gelles, S. I. Chan, R. J. Sullivan, and R. A. Scott, Extended X-ray absorption fine structure of copper in CuA-depleted, p-(hydroxymercuri)-benzoate-modified, and native cytochrome c oxidase, Biochemistry 26:2091 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    O. Einarsdottir, and W. S. Caughey, Bovine heart cytochrome c oxidase preparations contain high affinity binding sites for magnesium as well for zinc, copper, and heme iron, Biochem. Biophys. Res. Comm. 129:840 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    G. C. M. Steffens, R. Biewald, and G. Buse, Cytochrome c oxidase is a three-copper, two-heme-A protein, Eur. J. Biochem. 164:295 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Bombelka, F.-W. Richter, A. Stroh, and B. Kadenbach, Analysis of the Cu, Fe and Zn contents in cytochrome c oxidases from different species and tissues by proton-induced X-ray emission (PIXE), Biochem. Biophys. Res. Comm. 140:1007 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Oeblad, E. Selin, B. Malmström, L. Strid, R. Aasa, and B.G. Malmström, Analytical characterization of cytochrome oxidase preparations with regard to metal and phospholipids contents, peptide composition and catalytic activity, Biochim. Biophys. Acta 975:267 (1989).CrossRefGoogle Scholar
  20. 20.
    M. Müller, N. Labonia, B. Schläpfer, and A. Azzi, Cytochrome c oxidase: past, present and future, in: Cytochrome Systems: Molecular Biology and Bioenergetics, S. Papa, B. Chance, and L. Ernster, eds., Plenum Press, New York (1987).Google Scholar
  21. 21.
    M. Müller, B. Schläpfer, and A. Azzi, Preparation of a one-subunit cytochrome oxidase from Paracoccus denitrificans: spectral analysis and enzymatic activity, Biochemistry 27:7546 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Müller, B. Schläpfer, and A. Azzi, Cytochrome c oxidase from Paracoccus denitrificans: both hemes are located in subunit one, Proc. Natl. Acad. Sci. USA 85:6647 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Müller, and A. Azzi, Subunit I is the catalytic center of Paracoccus denitrificans cytochrome c oxidase, Ann. N.Y. Acad. Sci. 550:13 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    M. M. Whittaker, V. L. De Vito, S. A. Asher, and J. W. Whittaker, Resonance Raman evidence for tyrosine involvement in the radical site of galactose oxidase, J. Biol. Chem. 264:7104 (1988).Google Scholar
  25. 25.
    B. G. Karlsson, R. Aasa, B. G. Malmström, and L. G. Lundberg, Rack-induced bonding in blue copper proteins: spectroscopic properties and reduction potential of the azurin mutant Met-121→Leu, FEBS Lett. 253:99 (1989).CrossRefGoogle Scholar
  26. 26.
    J. Hall, A. Moubarak, P. O’Brien, L. P. Pan, I. Cho, and F. Millet, Topological studies of monomeric and dimeric cytochrome c oxidase and identification of the copper A site using a fluorescence probe, J. Biol. Chem. 263:8142 (1988).PubMedGoogle Scholar
  27. 27.
    C. T. Martin, C. P. Scholes, and S. I. Chan, On the nature of cysteine coordination to CuA in cytochrome c oxidase, J. Biol. Chem. 263:8420 (1988)PubMedGoogle Scholar
  28. 28.
    R. A. Scott, W. G. Zumft, C. L. Coyle, and D.M. Dodey, Pseudomonas stutzen N2O reductase contains CuA-type sites, Proc. Natl. Acad. Sci. USA 86:4082 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Gelles, and S. I. Chan, Chemical modification of the CuA center in cytochrome c oxidase by sodium p-(hydroxymercuri)benzoate, Biochemistry 24:39634 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michele Müller
    • 1
  • Angelo Azzi
    • 1
  1. 1.Institut für Biochemie und MolekularbiologieUniversität BernBernSwitzerland

Personalised recommendations