Advertisement

Bioenergetics pp 111-123 | Cite as

Structural Studies of Euglena Cytochrome C1

  • Hiroshi Matsubara
  • Kuniaki Mukai
  • Sadao Wakabayashi

Summary

Euglena gracilis complex III prepared from its submitochondrial particles showed an atypical difference absorption spectrum for cytochrome c1 with α-peak at 561 nm. Pyridine ferrohemochrome of cytochrome c1 showed its α-peak at 553 nm. The amino-terminal sequence of cytochrome c1 suggested that its heme moiety was covalently linked to cysteine-39 through a single thioether bond. Phenylalanine occupied position 36 usually occupied by cysteine affording the other thioether bond. The total amino acid sequence of mature cytochrome c1 was determined by sequencing of its cDNA. The cDNA clone consisted of 872 base pairs encoding the mature protein with 243 amino acids. The putative sequence contained an unusual heme binding sequence, -F-A-P-C-H-, instead of the typical sequence, -C-X-Y-C-H-, found in other eukaryotic C-type cytochromes. Sequence comparison, gene manipulation, and physical studies indicated the heme ligands and a binding site to cytochrome c.

Keywords

Heme Iron Euglena Gracilis Submitochondrial Particle Horse Heart Cytochrome Thioether Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickerson, R. E., and Timkovich, R. (1975) in The Enzymes 11 (Boyer, P D., ed.) pp.397–547, Academic Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Pettigrew, G. W., Leaver, J. L., Meyer, T. E., and Ryle, A. P. (1975) Biochem. J. 147, 291–302PubMedGoogle Scholar
  3. 3.
    Scarpless, T. K., and Butow, R. A. (1970) J. Biol. Chem. 245, 50–57Google Scholar
  4. 4.
    Wakabayashi, S., Matsubara, H., Kim, C. H., Kawai, K., and King, T. E. (1980) Biochem. Biophys. Res. Commun. 97, 1548–1554PubMedCrossRefGoogle Scholar
  5. 5.
    Wakabayashi, S., Takeda, H., Matsubara, H., Kim, C. H., and King, T. E. (1982) J. Biochem. 91, 2077–2085PubMedGoogle Scholar
  6. 6.
    Wakabayashi, S., Matsubara, H., Kim, C. H., and King T. E. (1982) J. Biol. Chem. 257, 9335–9344PubMedGoogle Scholar
  7. 7.
    Mukai, K., Miyazaki, T., Wakabayashi, S., Kuramitsu, S., and Matsubara, H. (1985) J. Biochem. 98, 1417–1425PubMedGoogle Scholar
  8. 8.
    Mukai, K., and Matsubara, H. (1986) J. Biochem. 100, 1165–1173PubMedGoogle Scholar
  9. 9.
    Hase, T., Harabayashi, M., Kawai, K., and Matsubara, H. (1987) J. Biochem. 102, 401–410PubMedGoogle Scholar
  10. 10.
    Hase, T., Harabayashi, M., Kawai, K., and Matsubara, H. (1987) J. Biochem. 102, 411–419PubMedGoogle Scholar
  11. 11.
    Mukai, K., and Matsubara, H. (1987) in Adv. in Membrane Biochemistry and Bioenergetics (Kim, C. H., Tedeschi, H., Diwan, J. J., and Salerno, J. C., eds.) pp.179–184, Plenum Press, New YorkCrossRefGoogle Scholar
  12. 12.
    Mukai, K., Yoshida, M., Yao, Y., Wakabayashi, S., and Matsubara, H. (1988) Proc. Japan Acad. 64, Ser. B, 41–44CrossRefGoogle Scholar
  13. 13.
    Mukai, K., Yoshida, M., Toyosaki, H., Yao, Y., Wakabayashi, S., and Matsubara, H. (1989) Eur. J. Biochem. 178, 649–656PubMedCrossRefGoogle Scholar
  14. 14.
    Nakai, M., Harabayashi, M., Hase, T., and Matsubara, H. (1989) J. Biochem. 106, 181–187PubMedGoogle Scholar
  15. 15.
    Chirgwin, J. J., Przbyla, A. E., Mac Donald, R. J., and Rutter, W. J. (1979) Biochemistry 18, 5294–5299PubMedCrossRefGoogle Scholar
  16. 16.
    Aviv, H., and Leder, P. (1972) Proc. Natl. Acad. Sci. U.S.A. 69, 1408–1412PubMedCrossRefGoogle Scholar
  17. 17.
    Gubler, U., and Hoffman, B. J. (1983) Gene (Amst.) 25, 263–269CrossRefGoogle Scholar
  18. 18.
    Huynh, T. V., Young, R. A., and Davis, R. W. (1985) in DNA Cloning, A Practical Approach (Glover, D., ed.) Vol. I, pp.49–78, IRL Press, OxfordGoogle Scholar
  19. 19.
    Mierendorf, R. C., Percy, C., and Young, R. A. (1987) Methods in Enzymol. 152, 458–469CrossRefGoogle Scholar
  20. 20.
    Weinberger, C., Hollengerg, S. M., Thompson, E. B., Harmon, J. M., Brower, S. T., Cidlowski, J., Thompson, E. B., Rosenfeld, M. G., and Evance, R. M. (1985) Science 228, 740–742PubMedCrossRefGoogle Scholar
  21. 21.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467PubMedCrossRefGoogle Scholar
  22. 22.
    Tabor, S., and Richardson, C. C. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4767–4771PubMedCrossRefGoogle Scholar
  23. 23.
    Kadenback, B., Jarausch, J., Hartmann, R., and Merle, P. (1983) Anal. Biochem. 129, 517–521CrossRefGoogle Scholar
  24. 24.
    Hatefi, Y. (1985) Ann. Rev. Biochem. 54, 1015–1069PubMedCrossRefGoogle Scholar
  25. 25.
    Yu, C. A., Yu, L., and King, T. E. (1972) J. Biol. Chem. 247 1012–1019PubMedGoogle Scholar
  26. 26.
    Pettigrew, G. W. (1973) Nature 241, 531–533PubMedCrossRefGoogle Scholar
  27. 27.
    Lin, D. K., Niece, R. L., and Fitch, W. M. (1973) Nature 241, 533–535PubMedCrossRefGoogle Scholar
  28. 28.
    Paul, K. G., Theorell, H., and Akeson, A. (1953) Acta Chem. Scand. 7, 1284–1287CrossRefGoogle Scholar
  29. 29.
    Spackman, D. H., Moore, S., and Stein, W. H. (1958) Anal. Chem. 30, 1190–1206CrossRefGoogle Scholar
  30. 30.
    Sadler, I., Suda, K., Schatz, G., Kaudewitz, F., and Haid, A. (1984) EMBO J. 3, 2137–2143PubMedGoogle Scholar
  31. 31.
    Römisch, J., Tropschug, M., Sebald, W., and Weiss, H. (1987) Eur. J. Biochem. 164, 111–115PubMedCrossRefGoogle Scholar
  32. 32.
    Gabellini, N., and Sebald, W. (1986) Eur. J. Biochem. 154, 569–579PubMedCrossRefGoogle Scholar
  33. 33.
    Davidson, E., and Daldal, F. (1987) J. Mol. Biol. 195, 13–24PubMedCrossRefGoogle Scholar
  34. 34.
    Kurowski, B., and Ludwig, B. (1987) J. Biol. Chem. 262, 13805–13811PubMedGoogle Scholar
  35. 35.
    Nishikimi, M., Ohta, S., Suzuki, H., Tanaka, T., Kikkawa, F., Tanaka, M., Kagawa, Y., and Ozawa, T. (1988) Nucleic Acid Res. 16, 3577PubMedCrossRefGoogle Scholar
  36. 36.
    Pettigrew, G. W. (1974) Biochem. J. 139, 449–459PubMedGoogle Scholar
  37. 37.
    Kaminsky, L. S., Chiang, Y.-L., and King, T. E. (1975) J. Biol. Chem. 250, 7280–7287PubMedGoogle Scholar
  38. 38.
    Meyer, T. E., and Kamen, M. D. (1982) Adv. Prot. Chem. 35, 105–212CrossRefGoogle Scholar
  39. 39.
    Tervoort, M. J., and Van Gelder, B. F. (1983) Biochim. Biophys. Acta 722, 137–143PubMedCrossRefGoogle Scholar
  40. 40.
    Funahashi, T. (1987) Some Structural Studies of Hemo-proteins in Mitochondrial Respiratory Chain, Doctoral thesis, No. 960, Faculty of Engineering, Kyoto UniversityGoogle Scholar
  41. 41.
    Bell, R. L., Sweetland, J., Ludwig, B., and Capaldi, R. A. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 741–745PubMedCrossRefGoogle Scholar
  42. 42.
    Broger, C., Salardi, S., and Azzi, A. (1983) Eur. J. Biochem. 131, 349–352PubMedCrossRefGoogle Scholar
  43. 43.
    Stonehuerner, J., O’Brient, P., Geren, L., Millett, F., Steidl, J., Yu, L., and Yu, C.-A. (1985) J. Biol. Chem. 260, 5392–5398PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hiroshi Matsubara
    • 1
  • Kuniaki Mukai
    • 1
  • Sadao Wakabayashi
    • 1
  1. 1.Department of Biology, Faculty of ScienceOsaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations