Skip to main content

How Does the Arterial Endothelium Sense Flow? Hemodynamic Forces and Signal Transduction

  • Chapter
Tobacco Smoking and Atherosclerosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 273))

Abstract

The focal nature of atherosclerotic lesions is associated with patterns of altered blood flow in the major arteries (1–3), although the precise nature of the flow in such regions is unclear. At the interface between flowing blood and the arterial wall, a confluent monolayer of endothelial cells operates as a signal-transduction system for hemodynamic forces associated with flow. Investigations of the influence of pressure, stretch and shear stress upon endothelial biology have therefore been conducted with a view to linking the precise flow profiles and the vessel wall pathophysiology. It is now clear that early atherogenesis develops in the presence of an intact endothelial monolayer (4–6, 10) consistent with the pivotal role that the endothelium may play in this disease process. The mechanisms by which physical forces influence endothelial biology, however, have yet to be fully defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.G. Caro, J.M. Fitzgerald, and R.C. Schroter, Atheroma and arterial wall shear, Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc R Soc Lond B Biol Sci 177:109–159 (1971).

    Article  PubMed  CAS  Google Scholar 

  2. J.T. Flaherty, V.J. Ferrans, J.E. Pierce, T.E. Carew, III, and D.L. Fry, Localizing factors in experimental atherosclerosis. In: “Atherosclerosis and Coronary Heart Disease”, pp. 40–83. W. Likoff, B.L. Segal, W. Insull, and S.J. Moyer, eds. Grune and Stratton. (1972).

    Google Scholar 

  3. J.F. Cornhill and M.R. Roach, A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta, Atherosclerosis 23:489 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. P.F. Davies, M.A. Reidy, T.B. Goode, and D.E. Bowyer, Scanning electron microscopy in the evaluation of endothelial integrity of the fatty streak lesion of atherosclerosis. Atherosclerosis 25:125–130 (1976).

    Article  PubMed  CAS  Google Scholar 

  5. T.B. Goode, P.F. Davies, M.A. Reidy, and D.E. Bowyer, Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit, Atherosclerosis 27:235–251 (1977).

    Article  PubMed  CAS  Google Scholar 

  6. A. Faggiotto, R. Ross, and L. Harker, Studies of hypercholesterolemia in the non-human primate, I. Changes that lead to fatty streak formation, Arteriosclerosis 4:323 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. D.L. Fry, Acute vascular endothelial changes associated with increased blood velocity gradients, Circ Res 22:165–197 (1968).

    PubMed  CAS  Google Scholar 

  8. D.L. Fry, Response of the arterial wall to certain physical factors, Ciba Found Symp 12:93–110 (1972).

    Google Scholar 

  9. C.K. Zarins, D.P. Giddens, B.K. Bharadvaj, V.S. Sottiurai, R.F. Mabon, and S. Glagov, Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ Res 53:502–514 (1983).

    PubMed  CAS  Google Scholar 

  10. D.N. Ku, D.P. Giddens, C.K.Zarins, and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress, Arteriosclerosis 5:293–301 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. S. Glagov, C.K. Zarins, K.E. Taylor, R.A. Bomberger, and D.P. Giddens, Evidence that high flow velocity and endothelial disruption are not the prinicipal factors in experimental plaque localization. In: “Fluid Dynamics as a Localizing Factor for Atherosclerosis”, pp. 208–211, G. Schettler, R.M. Nerem, H. Schmid-Schonbein and H. Morl, ed., Springer, Berlin (1983).

    Google Scholar 

  12. P.F. Davies, A. Remuzzi, E.J. Gordon, C.F. Dewey, and M.A. Gimbrone, Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro, Proc Natl Acad Sci USA 83:2114–2117 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. T. Karino, M. Motomiya, and H.L. Goldsmith, Flow Patterns in Model and Natural Branching Vessels, in: “Fluid Dynamics as a Localizing Factor for Atherosclerosis”, pp. 60–70, G. Schettler, ed., Springer-Verlag, Heidelberg (1983).

    Chapter  Google Scholar 

  14. C.F. Dewey, Jr, Dynamics of arterial flow, Adv Exp Med Biol 115:55–103 (1979).

    Google Scholar 

  15. M.H. Friedman, C.B. Bargeron, C.M. Hutchins, F.F. Mark, and O.J. Deters, Hemodynamic measurements in human arterial casts and their correlation with histology and luminal area, J Biomech Eng 102:247–251 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. T. Karino and H.L. Goldsmith, Disturbed flow in models of branching vessels, Trans Am Soc Artif Intern Organs 26:500–505 (1980).

    PubMed  CAS  Google Scholar 

  17. D.N. Ku and D.P. Giddens, Laser Doppler anemometer measurement of pulsatile flow in a model carotid bifurcation, J Biomech 20:407–421 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. R.J. Lutz, J.N. Cannon, K.B. Bischoff, R.L. Dedrick, R.K. Stiles, and D.L. Fry, Wall shear stress distribution in a model canine artery during steady flow, Circ Res 41:391–399 (1977).

    PubMed  CAS  Google Scholar 

  19. S. Glagov, E. Weisenberg, C.K. Zarins, M.P. Stankunavicius, and B.A. Kolettis, Compensatory enlargement of human atherosclerotic coronary arteries, New Engl J Med 316:1371–1375 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. S. Glagov, Hemodynamic risk factors: mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis, in: “The Pathogenesis of Atherosclerosis”, pp. 164–199, R.W. Wissler and J.C Geer, eds., Williams and Watkins, Baltimore, (1972).

    Google Scholar 

  21. C.K. Zarins, D.P. Giddens, B.K. Bharadvaj, V.S. Sottiurai, R.F. Mabon, and S. Glagov, Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ Res 53:502–514 (1983).

    PubMed  CAS  Google Scholar 

  22. D.N. Ku, D.P. Giddnes, C.K. Zarins, and S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress, Arteriosclerosis 5:293–301 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. D.N. Ku and D. Liepsch, The effects of non-newtonian viscoelasticity and wall elasticity on flow at a 90 bifurcation, Biorheology 23:359–370 (1986).

    PubMed  CAS  Google Scholar 

  24. J.T. Flahery, J.E. Pierce, V.J. Ferrans, D.J. Patel, W.K. Tucker, and D.L. Fry, Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events, Circ Res 30:23–32 (1972).

    Google Scholar 

  25. C.F. Dewey, S.R. Bussolari, M.A. Gimbrone, and P.F. Davies, The dynamic response of vascular endothelial cells to fluid shear stress, J Biomech Engin 103:177–185 (1981).

    Article  Google Scholar 

  26. A. Remuzzi, C.F. Dewey, P.F. Davies, and M.A. Gimbrone, Orientation of endothelial cells in shear fields in vitro, Biorheology 21:617–630 (1984).

    PubMed  CAS  Google Scholar 

  27. M. Sato, M.J. Levesque, and R.M. Nerem, Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress, Arteriosclerosis 7:276–286 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. P.F. Davies, C.F. Dewey, S.R. Bussolari, E.J. Gordon, and M.A. Gimbrone, Influence of hemodynamic forces on vascular endothelial function, J Clin Invest 73:1121–1129 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. E.A. Sprague, V.L. Steinbach, R.M. Nerem, and C.J. Schwartz, Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization and degradation of low density lipoproteins by cultured arterial endothelium, Circulation 76:648–656 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. S.M. Schwartz, and Benditt, E.P. Benditt, Clustering of replicating cells in aortic endothelium, Proc Natl Acad Sci USA 73:651–653 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. S.M. Schwartz, Selection and characterization of bovine aortic endothelial cells, In Vitro 14:966 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. B.A. Caplan, and C.J. Schwartz, Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta, Atherosclerosis 17:401 (1973).

    Article  PubMed  CAS  Google Scholar 

  33. H.P. Sdougos, S.R. Bussolari, and C.F. Dewey, Secondary flow and turbulence in a cone-and-plate device, J Fluid Mech 138:379–404 (1984).

    Article  Google Scholar 

  34. S.L. Diamond, S.G. Eskin, and L.V. McIntire, Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells, Science 243:1483–1485 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. M. Yoshizumi, M. Murihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki, and Y. Yazaki, Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells, Biochem Biophys Res Comm 161:859–864 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. A.J. Hudspeth, How the ear’s works work, Nature 341:397–404 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. S.P. Olesen, D.E. Clapham, and P.F. Davies, Haemodynamic shear stress activates a K+ current in vascular endothelial cells, Nature 331:168–170 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. J.B. Lansman, T.J. Hallam, and T.J. Rink, Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers, Nature 325:811–813 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. P.F. Davies, How do vascular endothelial cells respond to flow?,News in Physiol Sci (NIPS) 4:22–26 (1989).

    Google Scholar 

  40. P.F. Davies, S.P. Olesen, D.E. Clapham, E.E. Morrel, and F.J.Schoen, Endothelial Communication, Hypertension 11:563–572 (1988).

    PubMed  CAS  Google Scholar 

  41. P.M. VanHoutte, G.M. Rubanyi, V.M. Miller, and D.S. Houston, Endothelial relaxing factors, Ann Rev Physiol 48:307–320 (1986).

    Article  CAS  Google Scholar 

  42. R. Busse, H. Fichtner, A. Luckhoff, and M. Kohlhardt, Hyperpolarization and increased free calcium in Ach stimulated endothelial cells, Am J Physiol 255:H965–H969.

    Google Scholar 

  43. E.F. Grabowski, E.A. Jaffe, and B.B. Weksler, Protascyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress, J Lab Clin Med 105:36–43 (1985).

    PubMed  CAS  Google Scholar 

  44. J.A. Frangos, S.G. Eskin, L.V. McIntire, and C.L. Ives, Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells, Science 227:1477–1479 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. R.O. Dull, and P.F. Davies, Differential endothelial cytosolic calcium responses to hemodynamic shear stress in vitro, Circulation Suppl 2:481 (1989).

    Google Scholar 

  46. M.J. Berridge, and R.F. Irvine, Inositol Phosphates and cell signalling, Nature 341:197–205.

    Google Scholar 

  47. B.L. Langille, M.A. Reidy, and R.L. Kline, Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits, Arteriosclerosis 6:146–154 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Davies, P.F., Dull, R.O. (1990). How Does the Arterial Endothelium Sense Flow? Hemodynamic Forces and Signal Transduction. In: Diana, J.N. (eds) Tobacco Smoking and Atherosclerosis. Advances in Experimental Medicine and Biology, vol 273. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5829-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5829-9_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5831-2

  • Online ISBN: 978-1-4684-5829-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics