Advertisement

Effects of NH4+ on the Function of the CNS

  • W. Raabe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)

Abstract

Several encephalopathies are associated with hyperammonemia, example the encephalopathies associated with ureacycle disorders and portasystemic (hepatic) encephalopathy. Hyperammonemia increases NH 4 + in the CNS (21). Increases of NH 4 + in the CNS affect the function of neurons and disturb neuronal interactions. Therefore, it can be presumed that the encephalopathies associated with hyperammonemia are significantly contributed to if not solely caused by, the effects of NH 4 + on the function of neurons.

Keywords

Ammonium Acetate Synaptic Transmission Rest Membrane Potential Presynaptic Terminal Neuronal Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anisen, G., Lindstrom, S. and Lo, F. S. Inhibition from the brainstem of inhibitory interneurons of the cat’s dorsal lateral geniculate nucleus. J. Physiol. (London) 347: 593–609, 1984.Google Scholar
  2. 2.
    Alger, B.E. and Nicoll, R. Ammonia does not selectively block IPSPs in rat hippocampal cells. J. Neurophysiol. 49: 1381–1392, 1983.PubMedGoogle Scholar
  3. 3.
    Andersen, P. and Sears, T.A. The role of inhibition in the phasing of spontaneous thalamo-cortical discharge. J. Physiol. (London) 173: 459–480, 1964.Google Scholar
  4. 4.
    Binstock, L. and Lecar, H. Ammonium ion currents in the squid giant axon. J. Gen. Physiol. 53: 342–361, 1969.PubMedCrossRefGoogle Scholar
  5. 5.
    Brink, E., Jankowska, E., McCrea, D.S. and Skoog, B. Inhibitory interactions between interneurons in reflex pathways from group Ia and group Ib afferents in the cat. J. Physiol. (London) 343: 361–373, 1983.Google Scholar
  6. 6.
    Burke, R.E., Jankowska, E. and Bruggencate, G. A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae. J. Physiol. (London) 207: 709–732, 1970.Google Scholar
  7. 7.
    Butterworth, R.F., Girard, G. and Giguere, J. F. Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J. Neurochem. 51: 486–490, 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Coombs, J.S., Eccles, J.C. and Fatt, P. The electrical properties of the motoneurone membrane. J. Physiol. (London) 130: 291–325, 1955.Google Scholar
  9. 9.
    Creutzfeldt, O.D., Watanabe, S. and Lux, H.D. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. Clin. Neurophysiol. 20: 1–18, 1966.CrossRefGoogle Scholar
  10. 10.
    Deupree, D. and Raabe, W. Hyperammonemia produces seizures by neuronal depolarization. Soc. Neurosci. Abstr. 15: 1032, 1989.Google Scholar
  11. 11.
    Deschenes, M., Paradis, M., Roy, J.P., and Steriade, M. Electrophysiology of neurons of lateral thalamic nuclei in cat: Resting properties and burst discharges. J. Neurophysiol. 51: 1196–1219, 1984.PubMedGoogle Scholar
  12. 12.
    Eccles, J.C., Ito, M. and Szentagothai, J. The cerebellum as a neuronal machine. New York, Springer, 1967.Google Scholar
  13. 13.
    Ehrlich, M, Plum, F. and Duffy, T.E. Blood and brain ammonia concentrations after portacaval anastomosis. Effects of acute ammonia loading. J. Neurochem. 34: 1538–1542, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Fan, P. and Szerb, J.C. Concentration-dependent effects of ammonium ions on synaptic transmission in the rat hippocampal slice. In: R. Butterworth and G. Pomier-Layragues (Eds.), Hepatic Encephalopathy: Pathophysiology and Treatment. Humana Press, Clifton, N.J., 1989, in pressGoogle Scholar
  15. 15.
    Felder, R.B. and Heesch, C.M. Interactions in nucleus tractus solitarius between right and left carotid nerves. Am J. Physiol. 253: H1127–H1135, 1987.PubMedGoogle Scholar
  16. 16.
    Franciolini, F. and Nonner, W. Anion and cation permeability of a chloride channel in rat hippocampal neurons. J. Gen. Physiol. 90: 453–478, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallego, A. and Lorente de No, R. On the effect of several monovalent ions upon frog nerve. J. Cell. Comp. Physiol. 29: 189–206, 1947.CrossRefGoogle Scholar
  18. 18.
    Hille, B. Ionic Channels of Excitable Membranes. Sunderland, Ma: Sinauer Associates Inc., 1984, p. 157.Google Scholar
  19. 19.
    Hindfeldt, B. and Siesjö, B.K. Cerebral effects of acute ammonia intoxication. I. The influence on intracellular and extracellular acid-base parameters. Scand. J. Clin. Lab. Invest. 28: 353–364, 1971.CrossRefGoogle Scholar
  20. 20.
    Jasper, H.H. Problems or relating cellular or modular specificity to cognitive functions: importance of statedependent reactions. In F.O. Schmitt, F.G. Worden, G. Adelman and S.G. Dennis (Eds.), The Organization of the Cerebral Cortex, The MIT Press, Cambridge and London, pp. 375–393, 1981.Google Scholar
  21. 21.
    Lin, S. and Raabe, W. Ammonia intoxication: Effects on cerebral cortex and spinal cord. J. Neurochem. 44: 1252– 1258, 1985.PubMedCrossRefGoogle Scholar
  22. 22.
    Llinas, R., Baker, R. and Precht, W. Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons. J. Neurophysiol. 37: 522–533.Google Scholar
  23. 23.
    Lux, H.D. Ammonium and chloride extrusion: hyperpolarizing synaptic inhibition in spinal motoneurons. Science Wash. DC 173: 555–557, 1971.CrossRefGoogle Scholar
  24. 24.
    Lux, H.D., Loracher, C. and Neher, E. The action of ammonium on post-synaptic inhibition of cat spinal motoneurons. Exp. Brain Res. 11: 431–447, 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Madison, D.V., Malenka, R.C. and Nicoll, R.A. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321: 695–697, 1986.PubMedCrossRefGoogle Scholar
  26. 26.
    Nicoll, R.A. The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide. J. Physiol. Lond. 283: 121–132, 1978.PubMedGoogle Scholar
  27. 27.
    Norenberg, M.D., Mozes, L.W., Papendick, R.E. and Norenberg, L. O.B. Effect of ammonia on glutamate, -aminobutyric acid, and rubidium uptake by astrocytes. Ann. Neurol. 18: 149A, 1985.Google Scholar
  28. 28.
    Owen, D.G., Segal, M. and Barker, J.L. Voltage-clamp analysis of a Ca2+ and voltage-dependent chloride conductance in cultured mouse spinal neurons. J. Neurophysiol. 55: 1115–1135, 1986.PubMedGoogle Scholar
  29. 29.
    Park, M.R., Lighthall, J.W. and Kitai, S.T. Recurrent inhibition in the rat neostriatum. Brain Res. 194: 359–369, 1980.PubMedCrossRefGoogle Scholar
  30. 30.
    Peters, A. and Fairen, A. Smooth and sparsely spined stellate cells in the visual cortex of the rat: A study using a combined Golgi-Electron Microscope technique. J. Comp. Neurol. 181: 129–172, 1978.PubMedCrossRefGoogle Scholar
  31. 31.
    Raabe, W. Simultaneous and independent IPSPs in nearby neurons in cat motor cortex. Brain Res. 72: 153–157, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Raabe, W. Synaptic transmission in ammonia intoxication. Neurochem. Pathol. 6: 145–166, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Raabe, W. The H-reflex in the encephalopathy due to ammonia intoxication. Exp. Neurol. 96: 601–611, 1987.PubMedCrossRefGoogle Scholar
  34. 34.
    Raabe, W. Ammonium decreases excitatory synaptic transmission in cat spinal cord “in vivo”. J. Neurophysiol. 62: 1461–1473, 1989.PubMedGoogle Scholar
  35. 35.
    Raabe, W. Neurophysiology of ammonia intoxication. In. R. Butterworth and G. Pomier-Layragues (Eds.), Hepatic Encephalopathy: Pathophysiology and Treatment. Humana Press, Clifton, N.J., 1989, pp. 49–77.Google Scholar
  36. 36.
    Raabe, W. Effects of NH+ 4 on reflexes in cat spinal cord. J. Neurophysiol. 64: 565–574, 1990.PubMedGoogle Scholar
  37. 37.
    Raabe, W. NH+ 4 decreases cholinergic excitation in cat spinal cord. Soc. Neurosci. Abstr. 15: 192, 1989.Google Scholar
  38. 38.
    Raabe, W. and Gumnit, R.J. Disinhibition in cat motor cortex by ammonia. J. Neurophysiol. 38: 347–355, 1975.PubMedGoogle Scholar
  39. 39.
    Raabe, W. and Lin, S. Ammonia, postsynaptic inhibition and CNS-energy state. Brain Res. 303: 67–76, 1984.PubMedCrossRefGoogle Scholar
  40. 40.
    Raabe, W. and Lin, S. Pathophysiology of ammonia intoxication. Exp. Neurol. 87: 519–232, 1985.Google Scholar
  41. 41.
    Raabe, W. and Onstad, G. Porta-caval shunting changes neuronal sensitivity to ammonia. J. Neurol. Sci. 71: 307–314, 1985.PubMedCrossRefGoogle Scholar
  42. 42.
    Rosenberg, M.E. Synaptic connexions of alpha extensor motoneurons with ipsilateral and contralateral cutaneous nerves. J. Physiol. (London) 207: 231–255, 1970.Google Scholar
  43. 43.
    Rudomin, P. Primary afferent depolarization and presynaptic inhibition in the mammalian spinal cord. Puerto Rico Health Sci J. 7: 155–166, 1988.Google Scholar
  44. 44.
    Rudomin, P., Jiménez, I., Solodkin, M. and Duenas, S. Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia- and Ib-afferent fibers in cat spinal cord. J. Neurophysiol. 50: 743–769, 1983.PubMedGoogle Scholar
  45. 45.
    Schenker, S., McCandless, D.W., Brophy, E. and Lewis, M.S. Studies on the intracerebral toxicity of ammonia. J. Clin. Invest. 46: 838–848, 1967.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt, R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol. 63: 20–101, 1971.PubMedCrossRefGoogle Scholar
  47. 47.
    Singer, W. and Creutzfeldt, O. Unpublished results quoted by Creutzfeldt, O. and Houchin, J. in Neuronal Basis of EEG Waves, Handbook of Electroencephalography and Clinical Neurophysiology, Rémond, A., Ed., Elsevier, Amsterdam Vol. 2, Part C., pp 2C3–2C55, 1974.Google Scholar
  48. 48.
    Steriade, M. and Deschenes, M. The thalamus as a neuronal oscillator. Brain Res. Rev. 8: 1–63, 1984.CrossRefGoogle Scholar
  49. 49.
    Theoret, Y. and Bossu, J. L. Effects of ammonium salts on synaptic transmission to hippocampal CA1 and CA3 pyramidal cells “in vivo”. Neuroscience 14: 807–821, 1985.PubMedCrossRefGoogle Scholar
  50. 50.
    Théoret, Y., Davies, M.F., Esplin, B. and Capek, R. Effects of ammonium chloride on synaptic transmission in the rat hippocampal slice. Neuroscience 14: 798–806, 1985PubMedGoogle Scholar
  51. 51.
    Wilson, V.J. and Burgess, P.R. Disinhibition in the cat spinal cord. J. Neurophysiol. 25: 392–404, 1962.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. Raabe
    • 1
  1. 1.Departments of Neurology VA Medical CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations