Hyperammonemia Induces Brain Tubulin

  • Maria-Dolores Miñana
  • Vicente Felipo
  • Santiago Grisolía
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


We have developed an animal model of hyperammonemia consisting of feeding rats a diet containing ammonium acetate. Using this model we have found that hyperammonemia induces tubulin synthesis in brain. Initially tubulin accumulates rapidly (28% after 2 days on diet) and continues increasing but at a slower rate, reaching a 50% increase after 100 days on the diet. The effect is reversible, rats fed the ammonium diet return to normal levels of tubulin two days after withdrawal of the ammonium diet.

In contrast to the effect on brain, hyperammonemia did not increase tubulin content in liver or kidney. Moreover, the effect on brain is selective, with maximum increases of tubulin content in hippocampus, septum and reticular formation while other areas such as locus coeruleus and mammillary nucleus are not affected at all.

The results presented show that the induction of tubulin is a consequence of an increased polymerization of microtubules which in turn is due to an altered phosphorylation of microtubule-associated proteins.


Ammonium Ingestion Portacaval Shunt Giant Axon Neuropathy Brain Tubulin High Ammonia Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, S. H. and Fisher, B. (1961) Portacaval shunt in the rat. Surgery,50, 668–672.PubMedGoogle Scholar
  2. 2.
    Norenberg, M. D. and Lapham, L.W. (1974) The astrocyte response in experimental portal-systemic encephalopathy. An electron microscopy study. J. Neuropathol. Exp. Neurol. 33, 422–435.PubMedCrossRefGoogle Scholar
  3. 3.
    Prior, R.L. and Visek, W. J. (1972) Effects of urea hydrolysis on tissue metabolite concentrations in rats. Am. J. Physiol. 223, 1143–1149.PubMedGoogle Scholar
  4. 4.
    Azorín, I., Minana, M.D., Felipo, V. and Grisolía, S. (1989) A simple animal model of hyperammonemia. Hepatology 10, 311–316.PubMedCrossRefGoogle Scholar
  5. 5.
    Felipo, V., Minana, M.D. and Grisolía, S. (1988) Long-term ingestion of ammoniun increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur. J. Biochem 176, 567–571.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen, P. P. and Grisolía, S. (1948) The intermediate role of carbamyl-L-glutamic acid in citrulline synthesis. J. Biol. Chem. 174, 389–390.PubMedGoogle Scholar
  7. 7.
    Grisolía, S. and Cohen, P. P. (1953) Study of carbon dioxide fixation in the synthesis of citrulline. J. Biol. Chem. 204, 753–757.PubMedGoogle Scholar
  8. 8.
    Schott, K., Poetter, U. and Neuhoff, V. (1984) Ammonia inhibits protein synthesis in slices from young rat brain. J. Neurochem 42, 644–646.PubMedCrossRefGoogle Scholar
  9. 9.
    Felipo, V., Miñana, M. D., Azorín, I. and Grisolía, S. (1988) Induction of rat brain tubulin following ammonium ingestion. J. Neurochem 51, 1041–1045.PubMedCrossRefGoogle Scholar
  10. 10.
    Miñana, M. D., Felipo, V., Wallace, R. and Grisolía, S. (1988) High ammonia levels in brain induce tubulin in cerebrum but not in cerebellum, J. Neurochem. 51, 1839–1842.PubMedCrossRefGoogle Scholar
  11. 11.
    Cleveland, D. W. and Sullivan, K. (1985) Molecular biology and genetics of tubulin. Ann. Rev. Biochem. 54, 331–365.PubMedCrossRefGoogle Scholar
  12. 12.
    Webster, D. R. and Borisy, G. G. (1989) Microtubules are acetylated in domains that turn over slowly. J. Cell. Sci. 92, 57–65.PubMedGoogle Scholar
  13. 13.
    Edde, B., Denoulet, P, Nechaud, D., Koulakoff, A., Berwald- Netter, Y. and Gros, F. (1989) Posttranslational modifications of tubulin in cultured mouse brain neurons and astroglia. Biol. Cell, 65, 109–117.PubMedGoogle Scholar
  14. 14.
    Barra, H. S., Arce, C. A., Rodriguez, J. A. and Caputto, R. (1974) Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem, Biophys. Res. Commun. 60, 1384–1390.CrossRefGoogle Scholar
  15. 15.
    Tran, L. H., Binet, S. and Meininger, V. (1987). Regional specificity of tubulin heterogeneity in adult mouse brain. Neurochem. Int. 10, 121–125.PubMedCrossRefGoogle Scholar
  16. 16.
    Field, D. J., Collins, R. A. and Lee, J. C. (1984) Heterogeneity of brain tubulins. Proc. Natl. Acad. Sci. USA 81, 4041–4045.PubMedCrossRefGoogle Scholar
  17. 17.
    Artvinli, S. (1987) Cytoskeleton, microtubules, tubulin and colchicine: A review. Cytologia 52, 189–198.CrossRefGoogle Scholar
  18. 18.
    Weiss, D. G., Seith-Tutter, D., Langford, G. M. and Allen, R. D. (1987) The native microtubule as the engine for bidirectional organelle movements. in Axonal Transport, Alan R. Liss, Inc. pp 91–111.Google Scholar
  19. 19.
    O’Connor, J. E., Costell, M. and Grisolía, S. (1984) Protective effect of L-carnitine on hyperammonemia. FEBS Lett. 166, 331–334.PubMedCrossRefGoogle Scholar
  20. 20.
    Rousset, B. Bernier-Valentin, F. and Mornex, R. (1982) Biochemical aspects of the tubulin-microtubule system in non neural cells. in Hormones and cell regulation. Vol 6. Dumont, J. E., Nuñez, J. and Schultz, G., eds. pp 63–85. Elsevier Biomedical Press.Google Scholar
  21. 21.
    Ben-Ze’ev, A., Farmer, S. R. and Penman, S. (1978) Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17, 319–325.CrossRefGoogle Scholar
  22. 22.
    Cleveland, D. W. (1988) Autoregulated instability of tubulin mRNAs: A novel eukaryotic regulatory mechanism. TIBS 13, 339–342.PubMedGoogle Scholar
  23. 23.
    Miñana, M. D., Felipo, V. and Grisolía, S. (1989) Assembly and disassembly of brain tubulin is affected by high ammonia levels. Neurochem. Res. 14, 235–238.PubMedCrossRefGoogle Scholar
  24. 24.
    Jameson, L, Frey, T., Zeeberg, B., Dalldorf, F. and Caplow, M. (1980) Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry l9, 2472–2479.CrossRefGoogle Scholar
  25. 25.
    Viereck, C., Tucker, R. P., Binder, L. I. and Matus, A. (1988) Phylogenetic conservation of brain microtubule-associated proteins MAP2 and Tau. Neurosci. 26, 893–904.CrossRefGoogle Scholar
  26. 26.
    Izant, J. G. and Mcintosh, J. R. . (1980) Microtubule-associated proteins: A monoclonal antibody to MAP2 binds to differentiated neurons. Proc. Natl. Acad. Sci. USA. 77, 4741–4745.PubMedCrossRefGoogle Scholar
  27. 27.
    Perry, G. ed. (1987) Alterations in the neuronal cytoskeleton in Alzheimer Disease. Adv. Behav. Biol. Vol 34. Plenun Press.Google Scholar
  28. 28.
    Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I., Iqbal, K. and Wisniewski, H. M. (1989) Accumulation of abnormally phosphorylated Tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 477, 90–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Grundke-Iqbal, I., Vorbrodt, A. W., Iqbal, K., Tung, Y-C., Wang, G. P and Wisniewski, H. N. (1988) Microtubule-assocciated polypeptides Tau are altered in Alzheimer paired helical filaments. Mol. Brain Res. 4, 43–52.CrossRefGoogle Scholar
  30. 30.
    Minana, M. D., Felipo, V., Quel, A., Pallardó, F. and Grisolía, S. (1989) Selective regional distribution of tubulin induced in cerebrum by hyperammonemia. 14. 1241–1243.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Maria-Dolores Miñana
    • 1
  • Vicente Felipo
    • 1
  • Santiago Grisolía
    • 1
  1. 1.Instituto de Investigaciones CitológicasCaja de Ahorros de Valencia Centro Asociado del CSICValenciaSpain

Personalised recommendations