Ammonia Metabolism in Normal and Portacaval-Shunted Rats

  • Arthur J. L. Cooper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


Ammonia is generated from a large number of metabolically important reactions. Despite its central importance in whole body nitrogen homeostasis excess ammonia is neurotoxic and its concentration must be kept low. Ammonia generated in most extrahepatic tissues is detoxified by incorporation into glutamine (amide). This glutamine may be used in a number of biosynthetic reactions (e.g. in pyrimidine synthesis). Alternatively, as a means of maintaining nitrogen balance, glutamine may be released to the blood. Resting skeletal muscle is particularly important 1) as a “sink” for removal of blood ammonia, and 2) as a major source of circulating glutamine. However, during vigorous exercise skeletal muscle may become a net contributor of ammonia to the blood. A few tissues and cell types (e.g. lymphocytes, macrophages, enterocytes, colonocytes, thymocytes, fibroblasts, bone) and tumors exhibit marked rates of glutamine utilization. In the kidney, glutamine is an important source of urinary ammonia. Ammonia generated from 1) the breakdown of nitrogenous substances in the gut, and 2) from the use of glutamine as a metabolic fuel in the small intestine, is taken up by the liver wherein it is detoxified by conversion to urea and to a lesser extent, glutamine. Some portal vein glutamine acts as a source of urea nitrogen. Ultimately, however, most excess ammonia nitrogen is detoxified indirectly (via glutamine (blood) ⇢ glutamine (small intestine) ⇢ ammonia (portal vein) or directly in the liver as urea. Portal-systemic shunting of blood, as occurs in chronic cirrhosis of the liver or following the surgical construction of a portacaval shunt results in portal blood bypassing the normal ammonia detoxification machinery of the liver. Under this condition blood ammonia levels rise markedly, increasing the burden on extrahepatic tissues, such as skeletal muscle, brain, and kidney, in maintaining ammonia homeostasis. The most commonly employed animal model of human liver disease is the rat in which an end-to-side portacaval shunt (PCS) has been surgically constructed. Brain glutamine synthetase activity is not increased in PCS rats and in some areas of the brain there may even be a decrease in activity. The brain glutamine synthetase appears to be working at near maximal capacity. Thus, the PCS rats exhibit profound neurological dysfunction when administered ammonium salts in amounts easily tolerated by normal animals. Because of the limited capacity of brain to remove excess ammonia, a rational approach to the treatment of patients with liver disease should include a regimen directed toward lowering the associated hyperammonemia.


Hepatic Encephalopathy Glutamine Synthetase Urea Cycle Glutamine Synthetase Activity Portacaval Shunt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.V. Eck (1877) Ligature of the Portal Vein. Med. J. St. Petersburg 130:1–2. (Translated by C.G. Child (1953) Eck’s Fistula. Surg. Gynecol. Obstet. 96: 375–376.)Google Scholar
  2. 2.
    F. Plum (1971). The CSF in hepatic encephalopathy. Exp. Biol. Med. 4: 34–41.PubMedGoogle Scholar
  3. 3.
    A.J.L. Cooper and F. Plum (1987). Biochemistry and Physiology of Brain Ammonia. Physiol. Rev. 67: 440–519.PubMedGoogle Scholar
  4. 4.
    A.M. Benjamin (1982). Ammonia. In: Handbook of Neurochemistry vol. 1 (2nd ed.), edited by A. Lajtha, New York: Plenum Pr-ess, pp. 117–137.Google Scholar
  5. 5.
    C. Beaubernard, F. Salomon, D. Grange, M.J. Thangapressam and J. Bismuth (1977). Experimental hepatic encephalopathy: changes in the level of wakefulness in the rat with portacaval shunt. Biomedicine: 27: 169–171.PubMedGoogle Scholar
  6. 6.
    J.-F. Giguére and R.F. Butterworth (1984). Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem. Res. 9: 1309–1321.PubMedCrossRefGoogle Scholar
  7. 7.
    A. Gjedde, A.H. Lockwood, T.E. Duffy and F. Plum (1978). Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effect of an acute ammonia challenge. Ann. Neurol. 3: 325–330.PubMedCrossRefGoogle Scholar
  8. 8.
    B. Hindfelt, F. Plum and T.E. Duffy (1977). Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59: 386–396.PubMedCrossRefGoogle Scholar
  9. 9.
    G.B. Phillips, R. Schwartz, G.J. Gabuzda Jr. and S.C. Davidson (1952). The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N. Engl. J. Med. 247: 239–246.PubMedCrossRefGoogle Scholar
  10. 10.
    W. Raabe and G. Onstad (1985). Porta-caval shunting changes neuronal sensitivity to ammonia. J. Neurol. Sci. 71: 307–314.PubMedCrossRefGoogle Scholar
  11. 11.
    R.D. Adams and J.M. Foley (1953). The neurological disorder associated with liver disease. In: Metabolic and Toxic Diseases of the Nervous System, vol. 32, edited by H.H. Meritt and C.C. Hare. Williams and Wilkins, Baltimore, MD. pp. 198–237.Google Scholar
  12. 12.
    C.J. Bruton, J.A.N. Corsellis and A. Russell (1970). Hereditary hyperammonaemia. Brain 93: 423–434.PubMedCrossRefGoogle Scholar
  13. 13.
    M.J. Mossakowski, K. Renkawek, Z. Kraśnicka, M. Śmiaek and A. Pronaszko (1970). Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture. Acta Neuropathol. 16: 1–16.PubMedCrossRefGoogle Scholar
  14. 14.
    J.B. Gregorios, L.W. Mozes, L-.O.B. Norenberg, and M.D. Norenberg (1985). Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44: 397–403.PubMedCrossRefGoogle Scholar
  15. 15.
    J.B. Gregorios, L.W. Mozes and M.D. Norenberg (1985). Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44: 404–414.PubMedCrossRefGoogle Scholar
  16. 16.
    C.W. Putnam, K.A. Porter and T.E Starzl (1976). Hepatic encephalopathy and light electron micrographic changes in the baboon after portal diversion. Ann. Surg. 184: 155–161.PubMedCrossRefGoogle Scholar
  17. 17.
    P. Taylor, W.C. Schoene, W.A. Reid Jr. and F. von Lichtenberg (1979). Quantitative changes in astrocytes after portacaval shunting in chimpanzees and in man with normal liver parenchyma. Arch. Pathol. Lab. Med. 103: 82–85.PubMedGoogle Scholar
  18. 18.
    J.A. Gutierrez and M.D. Norenberg (1977). Ultrastructural study of methionine sulfoximine-induced Alzheimer’s type II astrocytosis. Am. J. Pathol. 86: 285–300.PubMedGoogle Scholar
  19. 19.
    G.E. Gibson, A. Zimber, L. Krook, E.P. Richardson and W.J. Visek (1974). Brain histology and behavior of mice treated with urease. J. Neuropath. Neurol. 33: 201–211.CrossRefGoogle Scholar
  20. 20.
    M.D. Norenberg (1977). A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Lab. Invest. 36: 618–627.PubMedGoogle Scholar
  21. 21.
    A.J. Zamora, J.B. Cavanagh and M.H. Kyu (1973). Ultrastructural responses of the astrocyte to portocaval anastomosis in the rat. J. Neurol. Sci. 18: 25–45.PubMedCrossRefGoogle Scholar
  22. 22.
    H. Lausen and N.H. Diemer (1980). Morphometry of astrocyte and oligodendrocyte ultrastructure after portocaval anostamosis in the rat. Acta Neuropath. 51: 65–70.CrossRefGoogle Scholar
  23. 23.
    M.D. Norenberg (1981). The astrocyte in liver disease. Adv. Cell Neurobiol. 2: 303–352.Google Scholar
  24. 24.
    V.E. Shih (1978). Urea cycle disorders and other congenital hyperammonemic syndromes. In: The Metabolic Basis of Inherited Disease. Edited by J.B. Stanbury, J.B. Wyngaarden and D.S. Fredrickson. McGraw-Hill, New York, pp. 362–386.Google Scholar
  25. 25.
    M.M. Msall, M.L. Batshaw, R. Suss, S.W. Brusilow and E.D. Mellits (1984). Neurologic outcome in children with inborn errors of urea synthesis. N. Engl. J. Med. 310 : 1500–1505.PubMedCrossRefGoogle Scholar
  26. 26.
    H.G. Windmueller and A.E. Spaeth (1974). Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249: 5070–5079.PubMedGoogle Scholar
  27. 27.
    H.G. Windmueller and A.E. Spaeth (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. J. Biol. Chem. 255: 107–112.PubMedGoogle Scholar
  28. 28.
    H.G. Windmueller and A.E. Spaeth (1981). Source and fate of circulating citrulline. Am. J. Physiol. 241: E473–E480.PubMedGoogle Scholar
  29. 29.
    R.M. Biltz, J.M. Letteri, E-D. Pellegrino, A. Palekar and L.M. Pinkus (1983). Glutamine metabolism in bone. Min. Elect. Metab. 9: 125–131.Google Scholar
  30. 30.
    J.T. Tildon and H.R. Zielke (1988). Glutamine: an energy source for mammalian tissues. In: Glutamine and Glutamate in Mammals. Vol 1. Edited by E. Kvamme. CRC Press, Boca Raton, FL. pp. 167–182.Google Scholar
  31. 31.
    E.A. Newsholme, P. Newsholme and R. Curi (1987). The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns. Biochemistry Soc. Symp. 154: 145–161.Google Scholar
  32. 32.
    A.J.L. Cooper, E. Nieves, A.E. Coleman, S. Filc-DeRicco and A.S. Gelbard (1987). Short-term metabolic fate of [ 13N]ammonia in rat liver in vivo. J. Biol. Chem. 262: 1073–1080.PubMedGoogle Scholar
  33. 33.
    D. Häussinger and W. Gerok (1986). Metabolism of amino acids and ammonia. In: Regulation of Hepatic Metabolism, edited by R.G. Thurman, F.C. Kauffman and K. Jungermann. Plenum Press, New York, pp. 253–291.Google Scholar
  34. 34.
    A.J.L. Cooper, E. Nieves, K.C. Rosenspire, S. Filc-DeRicco, A.S. Gelbard, and S.W. Brusilow (1988). Shortterm metabolic fate of 13N-labeled glutamate, alanine, and glutamine (amide) in rat liver. J. Biol. Chem. 263: 12268–12273.PubMedGoogle Scholar
  35. 35.
    A.F.M. Moorman, J.L.M. Vermeulen, R. Charles and W.H. Lamers (1989). Localization of ammonia-metabolizing enzymes in human liver: Ontogenesis of heterogeneity. Hepatology: 10, 367–372.CrossRefGoogle Scholar
  36. 36.
    D. Häussinger (1989). Glutamine metabolism in the liver: Overview and current concepts. Metabolism 38 (Supplement 1) 14–17.PubMedCrossRefGoogle Scholar
  37. 37.
    V. Pamiljans, P.R. Krishnaswamy, G. Dumville, and A. Meister (1962). Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. Biochemistry : 1, 153–158.PubMedCrossRefGoogle Scholar
  38. 38.
    N.S. Cohen, F.S. Kyan, S.S. Kyan, C-W. Cheung and L. Raijman (1985). The apparent Km of ammonia for carbamyl phosphate synthetase (ammonia) in situ. Biochem. J. 229: 205–211.PubMedGoogle Scholar
  39. 39.
    A.J.L. Cooper, E. Nieves, S. Filc-DeRicco, and A.S. Gelbard (1988). Short-term metabolic fate of [13N]ammonia, L-[13N] alanine, L-[13N] glutamate, and L- [amide-13N] glutamine in normal rat liver in vivo. In:Advances in Ammonia Metabolism and Hepatic Encephalopathy, edited by P.B. Soeters, J.H.P. Wilson, A.J. Meijer and E. Holm. Elsevier, Amsterdam pp. 11–25.Google Scholar
  40. 40.
    D.E. Atkinson and E. Bourke (1987). Metabolic aspects of the regulation of systemic pH. Am. J. Physiol. 252: F947–F956.PubMedGoogle Scholar
  41. 41.
    M. Walser (1986). Roles of urea production, ammonium excretion, and amino acid oxidation and acid-base balance. Am. J. Physiol. 250: F181–F188.Google Scholar
  42. 42.
    D. Häussinger and H. Sies (1979). Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur. J. Biochem. 101: 179–184.PubMedCrossRefGoogle Scholar
  43. 43.
    D. Häussinger, W. Gerok and H. Sies (1983). Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim. Biophys. Acta 755: 272–278.PubMedCrossRefGoogle Scholar
  44. 44.
    M. Buttrose, D. McKellar and T.C. Welbourne (1987). Gutliver interaction in glutamine homeostasis: portal ammonia role in uptake and metabolism. Am. J. Physiol. 252: E746–E750.PubMedGoogle Scholar
  45. 45.
    L. Lenzen, S. Soboll, H. Sies and D. Häussinger (1987). pH control of hepatic glutamine degradation. Role of transport. Eur. J. Biochem. 166: 483–488.PubMedCrossRefGoogle Scholar
  46. 46.
    A.J. Meijer (1985). Channeling of ammonia from glutaminase into carbamoyl-phosphate synthetase in liver mitochondria. FEBS Lett 191: 249–251.PubMedCrossRefGoogle Scholar
  47. 47.
    M. Walser and L.J. Bodenlos (1959). Urea metabolism in man. J. Clin. Invest. 38: 1617–1626.PubMedCrossRefGoogle Scholar
  48. 48.
    O.M. Wrong, A.J. Vince and J.C. Waterlow (1985). The contribution of endogenous urea to faecal ammonia in man, determined by 15N labeling of plasma urea. Clin. Sci. 68: 193–199.PubMedGoogle Scholar
  49. 49.
    A.J.L. Cooper (1988). L-Glutamate (2-oxoglutarate) aminotransferases. In: Glutamine and Glutamate in Mammals, Vol. 1. Edited by E. Kvamme. CRC Press, Inc., Boca Raton, FL. pp 123–152.Google Scholar
  50. 50.
    A.J.L. Cooper and A. Meister (1989). An appreciation of Professor Alexander E. Braunstein. The discovery and. scope of enzymatic transamination. Biochimie 71: 387–404.PubMedCrossRefGoogle Scholar
  51. 51.
    A.H. Lockwood, J.M. McDonald, R.E. Reiman, A.S. Gelbard, J.S. Laughlin, T.E. Duffy and F. Plum (1979). The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J. Clin. Invest. 63: 449–460.PubMedCrossRefGoogle Scholar
  52. 52.
    P. Babij, S.M. Matthews and M.J. Rennie (1983). Changes in blood ammonia, lactate and amino acids in relation to workload during bicycle ergometric exercise in man. Eur. J. App. Physiol. Occup. Physiol 50: 405–411.CrossRefGoogle Scholar
  53. 53.
    E.W. Banister, M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge and B.J.C. Mutch (1983). The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur. J. Appl. Physiol. Occup. Physiol 51: 195–202.CrossRefGoogle Scholar
  54. 54.
    G. A. Dudley, R.S. Staron, T.F. Murray, F.C. Hagerman and A. Luginbuhl (1983). Muscle fiber composition and blood ammonia levels after intense exercise in humans. J. Appl. Physiol. 54: 582–586.PubMedGoogle Scholar
  55. 55.
    R.A. Meyer, G.A. Dudley and R.L. Terjung (1980). Ammonia and IMP in different skeletal muscle fibers after exer cise in rats. J. Appl. Physiol. 49: 1037–1041.PubMedGoogle Scholar
  56. 56.
    E.W. Banister and B.J.C. Cameron (1989). Exercise-induced hyperammonemia: peripheral and central effects. Int. J. Sports Med. Vol. II; Supplement 2: S129–S142.Google Scholar
  57. 57.
    K. Iqbal and J.H. Ottaway (1970). Glutamine synthetase in muscle and kidney. Biochem. J. 119: 145–156.PubMedGoogle Scholar
  58. 58.
    W.B. Rowe (1985). Glutamine synthetase from muscle. Methods Enzymol. 113: 199–212.PubMedCrossRefGoogle Scholar
  59. 59.
    H. Shröck and L. Goldstein (1981). Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am. J. Physiol. 240: E519–E525.Google Scholar
  60. 60.
    M.H.N. Golden, P. Jahoor and A.A. Jackson (1982). Glutamine production rate and its contribution to urinary ammonia in normal man. Clin. Sci. 62: 299–305.PubMedGoogle Scholar
  61. 61.
    N. Bulus, E. Cersosimo, F. Ghishan and N.N. Abumrad (1989). Physiologic importance of glutamine. Metabolism 38: suppl. 1, 1–5.PubMedCrossRefGoogle Scholar
  62. 62.
    E.B. Marliss, T.T. Aoki, T. Pozefsky, A.S. Most and G.F. Cahill Jr. (1971). Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. J.Clin. Invest. 50:814–817.PubMedCrossRefGoogle Scholar
  63. 63.
    R.P. Durschlag and R.J. Smith (1985). Regulation of glutamine production by skeletal muscle cells in culture. Am. J. Physiol. 248: C442–C448.PubMedGoogle Scholar
  64. 64.
    A.E. Harper, R.H. Miller and K.P. Block (1984). Branchedchain amino acid metabolism. Ann. Rev. Nutr. 4: 409–454.CrossRefGoogle Scholar
  65. 65.
    A.J.L. Cooper (1988). Glutamine synthetase. In: Glutamine and Glutamate in Mammals. Vol 1. Edited by E. Kvamme. CRC Press, Boca Raton, FL,. pp. 7–31.Google Scholar
  66. 66.
    J. Krivokapich, S.-C. Huang, M.E. Phelps, N.S. MacDonald and K.I. Shine (1982). Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J. Physiol. 242: H536–H542.PubMedGoogle Scholar
  67. 67.
    J. Krivokapich, J.R. Barrio, M.E. Phelps, C.R. Watanabe, R.E. Keen, H.C. Padgett, A. Douglas and K.I. Shine (1984). Kinetic characterization of 13NH3 and [13N] glutamine metabolism in rabbit heart. Am. J. Physiol. 246:H267–H273.PubMedGoogle Scholar
  68. 68.
    B.R. Freed and A.S. Gelbard (1982). Distribution of 13N following intravenous injection of [13] ammonia in the rat. Can. J. Physiol. Pharmacol. 60: 60–67.PubMedCrossRefGoogle Scholar
  69. 69.
    B.R. Freed and A.J.L. Cooper. Manuscript in preparation.Google Scholar
  70. 70.
    T.C. Welbourne (1988). Role of the lung in glutamine homeostasis. In: New Aspects of Renal Ammonia Metabolism. Contribution to Nephrology Vol. 63. Edited by G.M. Berlyne and S. Giovannetti. Karger, Basel, pp. 178–182.Google Scholar
  71. 71.
    H.B. Burch, A.W.K. Chan, T.R. Alvey and O.H. Lowry (1978). Localization of glutamine accumulation and tubular reabsorption in rat nephron. Kidney Int. 14: 406– 413.PubMedCrossRefGoogle Scholar
  72. 72.
    H.B. Burch, S. Choi, W.Z. McCarthy, P.Y. Wong and O.H. Lowry (1978). The location of glutamine synthetase within the rat and rabbit nephron. Biochem. Biophys. Res. Commun. 82: 498–505.PubMedCrossRefGoogle Scholar
  73. 73.
    T.C Welbourne and V. Phromphetcharat (1984). Renal glutamine metabolism and hydrogen ion homeostasis. In: Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer-Verlag, Berlin, pp. 167– 170.Google Scholar
  74. 74.
    D.W. Good and M.A. Knepper (1985). Ammonia transport in the mammalian kidney. Am. J. Physiol. 248: F459–F471.PubMedGoogle Scholar
  75. 75.
    A.C. Schoolwerth, B.L. Nazar and K.F. LaNoue (1978). Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J. Biol. Chem. 253: 6177–6183.PubMedGoogle Scholar
  76. 76.
    R.T. Bogusky and T.T. Aoki (1983). Early events in the initiation of ammonia formation in kidney. J. Biol. Chem. 258: 2795–2801.PubMedGoogle Scholar
  77. 77.
    M.L. Halperin, P. Vinay, A. Gougoux, C. Pichette and R. L. Jungas (1985). Regulation of the maximum rate of renal ammoniagenesis in the acidotic dog. Am. J. Physiol. 248: F607–F615.PubMedGoogle Scholar
  78. 78.
    J.M. Nishiitsuji-Uwo, B.D. Ross and H.A. Krebs (1967). Metabolic activities of the isolated perfused rat kidney. Biochem. J. 103: 852–862.Google Scholar
  79. 79.
    A.C. Damian and R.F. Pitts (1970). Rates of glutaminase 1 and glutamine synthetase reactions in rat kidney in vivo. Am.J. Physiol. 218: 1249–1255.PubMedGoogle Scholar
  80. 80.
    A.J.L. Cooper (1988). Glutamine aminotransferases and ω -amidases. In: Glutamine and Glutamate in Mammals, edited by E. Kvamme. CRC Press Inc, Boca Raton, FL. pp. 33–52.Google Scholar
  81. 81.
    A.J.L. Cooper, L.K.H. Leung and Y. Asano (1989). Enzymatic cycling assay for phenylpyruvate. Anal. Biochem. 183: 210–214.PubMedCrossRefGoogle Scholar
  82. 82.
    M.D. Norenberg and A. Martinez-Hernandez (1979). Fine structural localization of glutamine synthetase in astrocytes in rat brain. Brain Res. 161. 303–310.PubMedCrossRefGoogle Scholar
  83. 83.
    A.J.L. Cooper; J.M. McDonald, A.S. Gelbard, R.F. Gledhill and T.E. Duffy (1979). The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992.PubMedGoogle Scholar
  84. 84.
    A.J.L. Cooper, S.N. Mora, N.F. Cruz and A.S. Gelbard (1985). Cerebral ammonia metabolism in hyperammonemic rats. J. Neurochem. 44. 1716–1723.PubMedCrossRefGoogle Scholar
  85. 85.
    V. Schultz and J. M. Lowenstein (1976). Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain. J. Biol. Chem. 251: 485–492.PubMedGoogle Scholar
  86. 86.
    V. Schultz and J.M. Lowenstein (1978). The purine nucleotide cycle. Studies of ammonia production and interconversion of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J. Biol. Chem. 253: 1938–1943.PubMedGoogle Scholar
  87. 87.
    A.M. Benjamin and J.H. Quastel (1975). Metabolism of amino acids and ammonia in rat brain cortex slices in vitro: a possible role of ammonia in brain function. J. Neurochem. 25: 197–206.PubMedCrossRefGoogle Scholar
  88. 88.
    C.J. Van Den Berg (1973). A model of compartmentation in the brain based on glucose and acetate metabolism. In: Metabolic Compartmentation in the Brain, edited by R. Balazs and J.E. Cremer. Macmillan, London, pp. 137–166.Google Scholar
  89. 89.
    L. Hertz (1979). Functional interaction between neurons and astrocytes. 1. Turnover and metabolism of putative amino acid transmitters. Progr. Neurobiol. 13: 277–323.CrossRefGoogle Scholar
  90. 90.
    R.P. Shank and G. LeM. Campbell. a -Ketoglutarate and malate uptake and metabolism by synaptosomes. Further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42: 1153–1161.Google Scholar
  91. 91.
    A.C.H. Yu, J. Drejer, L. Hertz and A. Schousboe (1962). Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41: 1484–1487.CrossRefGoogle Scholar
  92. 92.
    S. Berl, G. Takagaki, D.D. Clarke and H. Waelsch (1962). Carbon dioxide fixation in the brain. J. Biol. Chem. 237: 2570–2573.PubMedGoogle Scholar
  93. 93.
    R.P. Shank and M.H. Aprison (1988). Glutamate as a neurotransmitter. In: Glutamine and Glutamate in Mammals, Vol. II. Edited by E. Kvamme. CRC Press, Inc., Boca Raton, FL, pp. 3–19.Google Scholar
  94. 94.
    D. Häussinger and W. Gerok (1984). Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis. Chem.-Biol. Interact. 48:191–194.PubMedCrossRefGoogle Scholar
  95. 95.
    G. Perez, B. Rietberg and E. Schiff (1978). Amino acid release by isolated perfused cirrhotic liver. Life Sci. 23:2533–2538.PubMedCrossRefGoogle Scholar
  96. 96.
    E.A. Jones, G.D. Cain and G. Dickinson (1972). Corticosteroid-induced changes in urea metabolism in patients with hepatocellular disease. Gastroenterology 62: 612– 617.PubMedGoogle Scholar
  97. 97.
    D. Rudman, T.J. Difulco, J.T. Galambos, R. B. Smith III, A. A. Salam and W.D. Warren (1973). Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J. Clin. Invest. 52: 2241–2249.PubMedCrossRefGoogle Scholar
  98. 98.
    H. Vilstrup (1980). Synthesis of urea after stimulation with amino acids: relation to liver function. Gut. 21: 990–995.PubMedCrossRefGoogle Scholar
  99. 99.
    W. Gerok and D. Häussinger (1984). Ammonia detoxication and glutamine metabolism in severe liver disease and its role in the pathogenesis of hepatic encephalopathy. In:Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer-Verlag, Berlin, Heidelberg, pp. 257–277.CrossRefGoogle Scholar
  100. 100.
    K.P. Maier, B. Volk, G. Hoppe-Seyler and W. Gerok (1974). Urea-cycle enzymes in normal liver and in patients with alcoholic hepatitis. Eur. J. Clin. Invest. 4: 193–195.PubMedGoogle Scholar
  101. 101.
    R. Gebhardt and D. Mecke (1984). Cellular distribution and regulation of glutamine synthetase in liver. In: Glutamine Metabolism in Mammalian Tissues. Edited by D. Häussinger and H. Sies. Springer Verlag, Heidelberg, pp. 98–121.CrossRefGoogle Scholar
  102. 102.
    D. Häussinger, S. Kaiser, T. Stehle and W. Gerok. Structural and functional organization of hepatic ammonia metabolism: pathophysiological consequences. In:Advances in Ammonia Metabolism and Hepatic Encephalopathy. Edited by P.B. Soeters, J. H. P. Wilson,A.J. Meijer and E. Holm. Elsevier Science Publisher, Amsterdam, pp. 26–36.Google Scholar
  103. 103.
    O.P. Ganda and N.B. Ruderman (1976). Muscle nitrogen metabolism in chronic hepatic insufficiency. Metabolism 25: 427–435.PubMedCrossRefGoogle Scholar
  104. 104.
    M. Imler, J.L. Schlienger and A. Frick (1978). Comparative study of ammonia and glutamine levels in blood and in cerebrospinal fluid in hepatic encephalopathy. In: Aminosauren, Ammoniak und hepatische Encephalopathie. Edited by F. Wewalka and B. Dragosics. G. Fischer, Stuttgart, pp. 105–117.Google Scholar
  105. 105.
    J.P. Colombo, J. Berüter, C. Bachmann and E. Peheim (1977). Enzymes of ammonia detoxication after portacaval shunt in the rat. 1. Carbamyl phosphate synthetase and aspartate transcarbamylase. Enzyme 22: 391–398.PubMedGoogle Scholar
  106. 106.
    R.D. Steele (1984). Hyperammonemia and orotic aciduria in portacaval-shunted rats. J. Nutr. 114: 210–216.PubMedGoogle Scholar
  107. 107.
    S.E. Hager and M.E. Jones (1967). A glutamine-dependent enzyme for the synthesis of carbamyl phosphate for pyri midine biosynthesis in fetal rat liver. J. Biol. Chem. 242: 5674–5680.PubMedGoogle Scholar
  108. 108.
    P.J. Natale and G.C. Tremblay (1974). Studies on the availability of intramitochondrial carbamoylphosphate for utilization in extramitochondrial reactions in rat liver. Arch. Biochem. Biophys. 162: 357–368.PubMedCrossRefGoogle Scholar
  109. 109.
    A.J.L. Cooper, T.E. Duffy, J.M. McDonald and A.S. Gelbard (1981). 13N as a tracer for studying ammonia uptake and metabolism in the brain. In: Advances in Chemistry, Series 197. Short-lived Radionucleides in Chemistry and Biology. Edited by J.W. Root and K.A. Krohn. American Chemical Society, Washington, D.C., pp. 369–388.Google Scholar
  110. 110.
    T.E. Duffy, F. Plum and A.J.L. Cooper (1983). Cerebral ammonia metabolism in vivo. In: Glutamine, Glutamate and GABA in the Central Nervous System. Edited by L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe. Alan R. Lis, New York, pp. 371–388.Google Scholar
  111. 111.
    N.F. Cruz and T.E. Duffy (1983). Local cerebral glucose metabolism in rats with chronic portacaval shunts. J. Cereb. Blood Flow Metab. 3: 311–320.PubMedCrossRefGoogle Scholar
  112. 112.
    H.F. Bradford and H.K. Ward (1976). On glutaminase activity in mammalian synaptosomes. Brain Res. 110: 115–125.PubMedCrossRefGoogle Scholar
  113. 113.
    R.F. Butterworth, G. Girard and J.— F. Giguére (1988). Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J. Neurochem. 51: 486–490.PubMedCrossRefGoogle Scholar
  114. 114.
    M. Ehlich, F. Plum and T.E. Duffy (1980). Blood and brain ammonia concentrations after portacaval anastomosis. Effect of acute ammonia loading. J. Neurochem. 34: 1538–1542.CrossRefGoogle Scholar
  115. 115.
    J.E. Cremer, D.F. Heath, H.M. Teal, M.S. Woods and J.B. Cavanagh (1975). Some dynamic aspects of brain metabolism in rats given a portocaval anastomosis. Neuropath. Appl. Neurobiol. 1. 293–311.CrossRefGoogle Scholar
  116. 116.
    T. Holmin and B.K. Seisjö (1974). The effect of portacaval anastomosis upon the energy state and upon acid-base parameters of the rat brain. J. Neurochem. 22: 403–412.PubMedCrossRefGoogle Scholar
  117. 117.
    S.M. Fitzpatrick, H.P. Hetherington, K.L. Behar and R.G. Shulman (1989). Effects of acute hyperammonemia on cerebral amino acid metabolism and pH in vivo, measured by 1H and 31p nuclear magnetic resonance. J. Neurochem. 52 : 741–749.PubMedCrossRefGoogle Scholar
  118. 118.
    L. Friolet, J.P. Colombo, F. Lazeyras, W.P. Aue, R. Kretschmer, A. Zimmerman and C. Bachman (1989). In vivo P NMR spectroscopy of energy rich phosphates in the brain of the hyperammonemic rat. Biochem. Biophys. Res. Comm. 159: 815–820.PubMedCrossRefGoogle Scholar
  119. 119.
    T.E. Bates, S. R. Williams, R.A. Kauppinen, and D.G. Gadian (1989). Observation of cerebral metabolites in an animal model of acute liver failure in vivo: A 1H and 31p nuclear magnetic resonance study. J. Neurochem. 53: 102–110.PubMedCrossRefGoogle Scholar
  120. 120.
    D.W. McCandless and S. Schenker (1981). Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain. Res. 44: 325–330.PubMedCrossRefGoogle Scholar
  121. 121.
    B. Hindfelt (1983). Ammonia intoxication and brain energy metabolism. In: New Aspects of Clinical Nutrition. Edited by G. Kleinberger and E. Deutsch. Karger, Basel, pp 474–484.Google Scholar
  122. 122.
    O.H. Lowry and J.V. Passonneau (1966). Kinetic evidence for multiple binding sites on phosphofructokinase. J. Biol. Chem. 241:2268–2279.PubMedGoogle Scholar
  123. 123.
    J.C.K. Lai and A.J.L Cooper (1986). Brain α-ketoglutarate dehydrogenase complex: kinetic properties,regional distribution and effects of inhibitors. J. Neurochem. 47: 1376–1386.PubMedCrossRefGoogle Scholar
  124. 124.
    A. H. Lockwood, M.D. Ginsberg, H.M. Rhoades and M.T. Gutierrez (1986). Cerebral glucose metabolism in the rat. Patterns of metabolism and implications for the pathogenesis of hepatic coma. J. Clin. Invest. 78: 86–95.PubMedCrossRefGoogle Scholar
  125. 125.
    A.M. Mans, J.F. Biebuyck, D.W. Davis, R.M. Bryan and R.A. Hawkins (1983). Regional cerebral glucose utilization in rats with portacaval anastomosis. J. Neurochem. 40: 986–991.PubMedCrossRefGoogle Scholar
  126. 126.
    J.B. Posner and F. Plum (1960). The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy. J. Clin. Invest. 39: 1246–1258.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Arthur J. L. Cooper
    • 1
    • 2
  1. 1.Department of BiochemistryCornell University Medical CollegeNew YorkUSA
  2. 2.Department of NeurologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations