Clinical Use of Carnitine Past, Present and Future

  • Noris Siliprandi
  • Fabio Di Lisa
  • Roberta Menabó
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


In animals carnitine is formed from proteic lysine through a complex set of reactions, leading to deoxycarnitine, the immediate precursor of carnitine in all tissues. However the last stage, hydroxylation of deoxycarnitine to carnitine, is restricted to liver, brain and, in humans, kidney (1). Therefore other tissues can export deoxycarnitine via the blood stream to these hydroxylating tissues, but for their own endogenous carnitine depend either on the return and import of the newly synthesized compound or on an adequate dietary supply.


Pyruvate Dehydrogenase Free Carnitine Carnitine Deficiency Carnitine Supplement Carnitine Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rebouche CJ. Comparative aspects of carnitine biosynthesis in microorganisms and mammals with attention to carnitine biosynthesis in man. In: Frenkel RA, McGarry JD, eds: Carnitine biosynthesis, metabolism and functions. New York: Academic Press, 1980; 57–67.Google Scholar
  2. 2.
    Feller AG, Rudman D. Role of carnitine in human nutrition. J Nutr 1988; 118: 541–547.PubMedGoogle Scholar
  3. 3.
    Siliprandi N, Ciman M, Sartorelli L. Myocardial carnitine transport. In: Stam H, van der Vusse CJ, eds. Lipid metabolism in the normoxic and ischaemic heart. Darmstadt: Steinkopff Verlag, 1987; 53–62.Google Scholar
  4. 4.
    Sartorelli L, Ciman M, Mantovani G, Siliprandi N. Carnitine transport in rat heart slices II. The carnitine/deoxycarnitine antiport. Ital J Biochem 1985; 34: 282–287.PubMedGoogle Scholar
  5. 5.
    Sartorelli L, Mantovani G and Ciman M. Effect of diazepam on the carnitine translocation in rat heart mitochondria. Biochem Biophys Res Commun 1989; 161: 295–299.PubMedCrossRefGoogle Scholar
  6. 6.
    Sartorelli L, Mantovani G and Ciman M. Carnitine and deoxycarnitine concentrations in rat tissues and urine after their administration. Biochim Biophys Acta 1989; 1006: 15–18.PubMedGoogle Scholar
  7. 7.
    Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 1973; 179: 899–902.PubMedCrossRefGoogle Scholar
  8. 8.
    Bieber LL. Carnitine. Ann Rev Biochem 1988; 57: 261–283.PubMedCrossRefGoogle Scholar
  9. 9.
    Bremer J. Carnitine: metabolism and functions. Physiol Rev 1983; 63: 1420–1480.PubMedGoogle Scholar
  10. 10.
    Jenkins DL, Griffith OW. DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism. J Biol Chem 1985; 260: 14748–14755.PubMedGoogle Scholar
  11. 11.
    Brecher P. The interaction of long-chain acylCoA with membranes. Mol Cell Biochem 1983; 57: 3–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Toninello A, Branca D, Scutari G, Siliprandi N, Vincenti E, Giron G. L-carnitine effect on halothane treated mitochondria. Biochem Pharmacol 1986; 35: 3961–3964.PubMedCrossRefGoogle Scholar
  13. 13.
    Pande SV, Blanchaer MC. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem 1971; 246; 402–411.PubMedGoogle Scholar
  14. 14.
    Siliprandi N, Di Lisa F, Sartorelli L. Transport and function of carnitine in cardiac muscle. In Berman MC, Gevers W, Opie LH, eds. Membrane and muscle. Oxford: ICSU Press, 1985; 105–119.Google Scholar
  15. 15.
    Watanabe H, Kobayashi A, Hyashi H, Yamazaki N. Effects of long chain acyl carnitine on membrane fluidity of human erythrocytes. Biochim Biophys Acta 1989; 980: 315–318.PubMedCrossRefGoogle Scholar
  16. 16.
    Shug AL, Thompsen JH, Folts JD, et al. Changes in tissue levels of carnitine and other metabolites during myocardial ischaemia and anoxia. Arch Biochem Biophys 197 8; 187: 25–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Ferri L, Valente M, Ursini F, Gregolin C, Siliprandi N. Acetyl-carnitine formation and pyruvate oxidation in mitochondria from different rat tissues. Bull Mol Biol Med 1981; 6: 16–23.Google Scholar
  18. 18.
    Reed LJ, Yeman JJ. Pyruvate dehydrogenase. The Enzymes 1987; 18: 77–96.CrossRefGoogle Scholar
  19. 19.
    Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974; 141: 761–774.PubMedGoogle Scholar
  20. 20.
    Ciman M, Caldesi-Valeri V, Siliprandi N. Carnitine and acetylcarnitine in skeletal and cardiac muscle. Int J Vit Nutr Res 1978; 48: 177–181.Google Scholar
  21. 21.
    Carter AL, Lennon LF, Stratman FW. Increased acetylcarnitine in rat skeletal muscle as a result of highintensity short-duration exercise. FEBS Lett. 1975; 52: 265–268.CrossRefGoogle Scholar
  22. 22.
    Uziel G, Garavaglia B, Di Donato S. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle & Nerve 1988; 11: 720–724.CrossRefGoogle Scholar
  23. 23.
    Siliprandi N, Sartorelli L, Ciman M, Di Lisa F. Carnitine: metabolism and clinical chemistry. Clin Chim Acta 1989; 183: 3–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Rizzon P, Biasco G, Boscia F, et al. High doses of L-carnitine in acute myocardial infarction: metabolic and antiarhythmic effects. Eur Heart J 1989; 10: 502–508.PubMedGoogle Scholar
  25. 25.
    De Vivo DC, Uziel G. Disturbances of pyruvate metabolism in neuromuscular diseases. In: Scarlato G, Cerri C, eds. Mitochondrial pathology in muscle disease. Padova: Piccin Medical Books, 1983; 57–70.Google Scholar
  26. 26.
    Siliprandi N, Vecchiet L, Di Lisa F. Carnitine administration in physical exercise. In Benzi G ed. Advances in Myochemistry II. Paris: J Libbey Eurotext, 1989; 273–278.Google Scholar
  27. 27.
    Siliprandi N, Di Lisa F, Pieralisi G, Ripari P, Maccari F, Menabó R, Giamberardino MA, Vecchiet L. Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochim Biophys Acta, 1990:1039:17–21.CrossRefGoogle Scholar
  28. 28.
    Chang TW, Goldberg AL. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscle during fasting. J Biol Chem 1978; 253: 3696–3701.PubMedGoogle Scholar
  29. 29.
    Hülsmann WC, Siliprandi D, Ciman M, Siliprandi N. Effect of carnitine on the oxidation of α -oxoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim Biophys Acta 1964; 93: 166–168.CrossRefGoogle Scholar
  30. 30.
    Harris RA, Powell SM, Paxton R, Gillin SE, Nagae H. Physiological covalent regulation of rat liver branched-chain α -ketoacid dehydrogenase. Arch Biochem Biophys 1985; 243: 542–555.PubMedCrossRefGoogle Scholar
  31. 31.
    Schölte HR. The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 1988; 20: 161–191.PubMedCrossRefGoogle Scholar
  32. 32.
    Chalmers RA, Roe CR, Tracey BM, Stacey RE, Hoppel CL, Millington DS. Secondary carnitine insufficiency in disorders of organic acid metabolism: modulation of acyl-CoA/CoA ratios by L-carnitine “in vivo”. Biochem Soc Trans 1983; 11: 724–725.Google Scholar
  33. 33.
    Di Mauro S, Bonilla E, Zeviani M, Nakagawa M, De Vivo DC. Mitochondrial myopathies. Ann Neurol 1985; 17: 521–538.CrossRefGoogle Scholar
  34. 34.
    Costell M, O’Connor JE, Grisolia S. Age-dependent decrease of carnitine content in muscle of mice and humans. Biochem Biophys Res Commun 1989; 161: 1135–1143.PubMedCrossRefGoogle Scholar
  35. 35.
    Siliprandi N, Siliprandi D, Ciman M. Stimulation of oxidation of mitochondrial fatty acids and acetate by acetylcarnitine. Biochem J 1965; 96:: 777–780.PubMedGoogle Scholar
  36. 36.
    Gadaleta MN, Petruzella V, Renis M, Fracasso F, Cantatora P. Reduced transcription of mitochondrial DNA in senescent rats: tissue dependence and effect of acetyl-L-carnitine. Eur J Biochem 1990; 181:501–506.CrossRefGoogle Scholar
  37. 37.
    Di Lisa F, Menabó R, Siliprandi N. L-propionylcarnitine protection of mitochondria in ischemic rat hearts. Mol Cell Biochem 1989; 88: 169–173.PubMedCrossRefGoogle Scholar
  38. 38.
    Miotto G, Venerando R, Siliprandi N. Inhibitory action of isovaleryl-L-carnitine on proteolysis in perfused rat liver. Biochem Biophys Res Commun 1989; 158: 797–802.PubMedCrossRefGoogle Scholar
  39. 39.
    Pontremoli S, Melloni E, Michetti M, Sparatore B, Salamino F, Siliprandi N, et al. Isovalerylcarnitine is a specific activator of calpain of human neutrophils. Biochem Biophys Res Commun 1987; 148: 1189–1195.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Noris Siliprandi
    • 1
  • Fabio Di Lisa
    • 1
  • Roberta Menabó
    • 1
  1. 1.Dipartimento di Chimica Biologica and Centro Fisiologia Mitocondriale CNRUniversità di PadovaItaly

Personalised recommendations