Metabolic Effects of Carnitine and Carnitine Analogs

  • Yoshinori Ohtsuka
  • Deborah J. Clark
  • Owen W. Griffith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


Cirrhosis of the liver is a common and serious disease with a poor prognosis (1). Loss of liver perfusion and function compromises hepatic detoxification reactions and exposes the central nervous system (CNS) to amino acid imbalances and to multiple toxins including ammonia, mercaptans, short-chain fatty acids, and “middle” molecular weight molecules (2). Although all of these molecules contribute individually and perhaps synergistically to hepatic encephalopathy, there is abundant evidence that elevated CNS ammonia levels are a major factor. Ammonia concentrations are often high in the blood and cerebrospinal fluid of patients with liver disease, and ammonia infusion into patients with significant portacaval shunting evokes a reaction clinically indistinguishable from impending hepatic coma. In experimental animals, acute administration of ammonium salts causes convulsions, coma and death. Although several therapies directed at hepatic encephalopathy-associated ammonia intoxication have been devised, none is completely effective in reversing the morbidity and mortality of the disorder. Better methods for controlling ammonia metabolism and toxicity are clearly needed.


Ammonium Acetate Hepatic Encephalopathy Maple Syrup Urine Disease Ammonia Toxicity Urea Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, E.A., and Gammal, S.H.: “Hepatic Encephalopathy” in The Liver : Biology and Pathobiology, Second Edition, (I. Arias, W.B. Jakoby, H. Popper, D. Schachter, and D.A. Shafritz, eds.), Raven Press, New York. pp. 985–1005 (1988).Google Scholar
  2. 2.
    Zieve, L.: “Hepatic Encephalopathy” in Diseases of the Liver Sixth Edition (E. Schiff, and E.R. Schiff, eds. ), J.B. Lippincott Co., Philadelphia, pp. 925–948 (1987).Google Scholar
  3. 3.
    O’Connor, J., Costell, M., and Grisolia, S.: “Protective Effect of L-Carnitine on Hyperammonemia,” FEBS Lett. 166, 331–334 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    O’ Connor, J.E., Costell, M., and Grisolia, S.: “Prevention of Ammonia Toxicity by L-Carnitine”, Neurochem. Res. 9, 563–570 (1984).CrossRefGoogle Scholar
  5. 5.
    Costell, M., O’Connor, J.E., Miguez, M.P., and Grisolia, S.: “Effects of L-Carnitine on Urea Synthesis Following Acute Ammonia Intoxication in Mice”, Biochem. Biophys. Res. Commun. 120, 726–733 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper, A.J.L. This Volume (1990).Google Scholar
  7. 7.
    Bieber, L.L., and Farrell, S.: “Carnitine Acyltransferases”, in The Enzymes, Third Edition (P.D. Boyer, ed) Academic Press, New York. pp. 627–644 (1983).Google Scholar
  8. 8.
    Bieber, L.L.: “Carnitine”, Ann. Rev. Biochem. 57, 261–283 (1988) .PubMedCrossRefGoogle Scholar
  9. 9.
    Pande, S.V.: “A Mitochondrial Carnitine Acylcarnitine Translocase System”, Proc. Natl. Acad. Sci. U.S. 72, 883–887 (1975).CrossRefGoogle Scholar
  10. 10.
    Ramsay, R.R., and Tubbs, P.K.: “The Mechanism of Fatty Acid Uptake by Heart Mitochondria: An Acylcarnitine-Carnitine Exchange”, FEBS Lett. 54, 21–25 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    Burlina, A.P., Sershen, H., Debler, E.A., and Lajtha, A.: “Uptake of Acetyl-L-Carnitine in the Brain”, Neurochem. Res. 14, 489–493, (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    Stumpf, D.A., Parker, W.D. Jr., and Angelini, C.: “Carnitine Deficiency, Organic Acidemias, and Reye’s Syndrome”, Neurology 35, 1041–1045, (1985).PubMedGoogle Scholar
  13. 13.
    Rudman, D., Sewell, C.W., and Ansley, J.D.: “Deficiency of Carnitine in Cachectic Cirrhotic Patients”, J. Clin. Invest. 60, 716–723, (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Fritz, I.B., and Schultz, S.K.: “Carnitine Acetyltrans-ferase”, J. Biol. Chem. 240, 2188–2192, (1965).PubMedGoogle Scholar
  15. 15.
    Tubbs, P.K., and Chase, J.F.A.: “Effects of an Acylcarnitine Analogue, 2-Bromomyristoylthiocarnitine, on Mitochondrial Respiration”, Biochem. J. 116, 34P (1970).PubMedGoogle Scholar
  16. 16.
    Ferri, L., Jocelyn, P.C., and Siliprandi, N.: “The Mitochondrial Handling of D,L-Thiocarnitine and Its S-Acetyl Derivative”, FEBS Lett. 121, 19–22, (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Duhr, E.F., Mauro, J.M., Clennan, E.L., and Barden, R.E.: “The Synthesis and Biological Activity of Thiocarnitine and Its Thiolesters”, Lipids 18, 382–386, (1983).CrossRefGoogle Scholar
  18. 18.
    Boots, M.R., Wolfe, M.L., Boots, S.G., and Bobbitt, J.L.: “Effect of Carnitine Analogs on Carnitine Acetyltransferase”, J. Pharm. Sci. 69, 202–204, (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    Pieklik, J.R., Guynn, R.W.: “Equilibrium Constants of the Reactions of Choline Acetyltransferase, Carnitine Acetyltransferase, and Acetylcholinesterase Under Physiological Conditions”, J. Biol. Chem. 250, 4445–4450, (1975).PubMedGoogle Scholar
  20. 20.
    Griffith, O.W., Jenkins, D.L., Lilly, K., and Bieber, L.L.: “Carboxyl-Modified Carnitine Analogs: Novel Substrates of the Carnitine Acyltransferases”, Fed. Proc. 46, 1180, (1987).Google Scholar
  21. 21.
    Jenkins, D.L., and Griffith, O.W.: “Inhibition of Carnitine Acetyltransf erase by 3-Acetamido-4-trimethylaminobutyrate, a Stable, Isosteric Analog of Acetylcarnitine”, Fed. Proc. 43, 2041, (1984).Google Scholar
  22. 22.
    Jenkins, D.L., and Griffith, O.W.: “DL-Aminocarnitine and Acetyl-DL-aminocarnitine. Potent Inhibitors of Carnitine Acyltransferases and Hepatic Triglyceride Catabolism”, J. Biol. Chem. 260, 14748–14755, (1985).PubMedGoogle Scholar
  23. 23.
    Kanamaru, T., Shinagawa, S., Asai, M., Okazaki, H., Sugiyama, Y., Fujita, T., Iwatsuka, H., and Yoneda, M.: “Emeriamine, an Antidiabetic β-aminobetaine Derived from a Novel Fungal Metabolite”, Life Sci. 37, 217–223, (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    Jenkins, D.L., and Griffith, O.W.: “Antiketogenic and Hypoglycemic Effects of Aminocarnitine and Acylaminocarnitines”, Proc. Natl. Acad. Sci. U.S.A. 83, 290–294, (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    Norum, K.R.: “Palmityl-CoA: Carnitine Palmityltransferase Studies on the Substrate Specificity of the Enzyme”, Biochem. Biophys. Acta 99, 511–522, (1965).PubMedGoogle Scholar
  26. 26.
    McGarry, J.D., and Foster, D.W.: “Acute Reversal of Experimental Diabetic Ketoacidosis in the Rat with (+)-Decanoylcarnitine”, J. Clin. Invest. 52, 877–884, (1973).PubMedCrossRefGoogle Scholar
  27. 27.
    Brady, L.J., Brady, P.S., Gandour, R.D., Colucci, W.J., and Stelly, T.C.: “Interaction of Sulfonic Acid Substituted Carnitine Analogues With Mitochondrial Carnitine Acyltransferases”, Fed. Proc. 46, 1180, (1987).Google Scholar
  28. 28.
    Kanamaru, T., and Okazaki, H.: “Emeriamine: A New Inhibitor of Long Chain Fatty Acid Oxidation and Its Antidiabetic Activity”, in Novel Microbial Products for Medicine and Agriculture (A.L. Demain, “et al” eds) Society for Industrial Microbiology, pp. 135–144, (1989).Google Scholar
  29. 29.
    Kanamura, T. and Okazaki, H.: “Emeriamine: a New Inhibitor of Long Chain Fatty Acid Oxidation and Its Antidiabetic Activity” in Novel Microbial Products for Medicine and Agriculture (A.L. Demain, G.A. Somkuti, J.C. Hunter-Cevera, and H.W. Rossmoore, eds.) Elsevier, pp. 135–144, (1989) .Google Scholar
  30. 30.
    Jenkins, D.L.: “Aminocarnitine and Acylaminocarnitines: Carnitine Acyltransferase Inhibitors Affecting Long-Chain Fatty Acid and Glucose Metabolism”, Ph.D. Thesis, Cornell University Medical College, New York, N.Y. (1989).Google Scholar
  31. 31.
    Maddaiah, V.T., and Miller, P.S.: “Effects of Ammonium Chloride, Salicylate, and Carnitine on Palmitic Acid Oxidation in Rat Liver Slices”, Pediat. Res. 25, 119–123, (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    Bellei, M., Battelli, D., Guarriero, D.M., Muscatello, U., DiLisa, F., Siliprandi, N., and Bobyleva-Guarriero, V.: “Changes in Mitochondrial Activity Caused by Ammonium Salts and the Protective Effect of Carnitine”, Biochem. Biophys. Res. Commun. 158, 181–188, (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    Kloiber, O., Banjac, B., and Drewes, L.R.: “Protection Against Acute Hyperammonemia: The Role of Quarternary Amines”, Toxicology49, 83–90, (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    Deshmukh, D.R., and Rusk, C.D.: “Failure of L-Carnitine to Protect Mice Against Ammonia Toxicity”, Biochem.Med. Metabolic Biol. 39, 126–130, (1988).CrossRefGoogle Scholar
  35. 35.
    O’Connor, J.E., Costell, M., Miguez, M.P., and Grisolia, S.: “Influence of the Route of Administration on the Protective Effect of L-Carnitine on Acute Hyperammonemia” Biochem. Pharmacol, 35, 3173–3176, (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    Hearn, T.J., Coleman, A.E., Lai, J.C.K., Griffith, O.W., and Cooper, A.J.L.: “Effect of Orally Administered L-Carnitine on Blood Ammonia and L-Carnitine Concentrations in Portacaval-Shunted Rats”, Hepatology 10, 822–828, (1989).PubMedCrossRefGoogle Scholar
  37. 37.
    McGarry, J.D., and Foster, D.W.: “Regulation of Hepatic Fatty Acid Oxidation and Ketone Body Formation”, Ann. Rev. Biochem. 49, 395–420, (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Yoshinori Ohtsuka
    • 1
  • Deborah J. Clark
    • 1
  • Owen W. Griffith
    • 1
  1. 1.Department of BiochemistryCornell University Medical CollegeNew YorkUSA

Personalised recommendations