Advertisement

Cerebral Function in Hepatic Encephalopathy

  • Richard A. Hawkins
  • Anke M. Mans
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)

Abstract

Hepatic encephalopathy in patients may result from the surgical formation of a portacaval shunt, or chronic liver disease, often accompanied by portal systemic shunting (1, 2, 3). Whether the development of encephalopathy is caused by diversion of blood past the liver, decreased liver function, or both, is unknown. The symptoms of hepatic encephalopathy caused by portacaval shunting (pcs) or chronic liver dysfunction in man range from very subtle subclinical abnormalities of intellectual and motor function to coma. The apparent reversibility of these symptoms suggests that the encephalopathy has a metabolic etiology. Even in the absence of serious symptoms brain function is compromised and is more sensitive to a variety of metabolic disturbances which in normal individuals would cause no serious alterations in cerebral function (1,2).

Keywords

Hepatic Encephalopathy Aromatic Amino Acid Neutral Amino Acid Plasma Amino Acid Hepatic Coma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoyumpa, A.M., Desmond, P.V., Avant, G.R., Roberts, R.K. and Schenker, S. Hepatic encephalopathy. Gastroenterology 76: 185–195, 1979.Google Scholar
  2. 2.
    Zieve, L. Hepatic encephalopathy (summary of present knowledge with an elaboration on recent developments), in Progress in Liver Diseases, Grune and Stratton, New York, pp. 327–341, 1979.Google Scholar
  3. 3.
    Misra, P. Hepatic encephalopathy. Med. Clin. Am. 65: 209–226, 1981.Google Scholar
  4. 4.
    Elsass, P., Lund, Y., and Ranek, L. Encephalopathy in patients with cirrhosis of the liver. A neuro-psychological study. Scand. J. Gastroenterol. 13: 241–247, 1978.Google Scholar
  5. 5.
    Rehnström, S., Simert, G., Hansson, J.A., Johnson, G., and Vang, J. Chronic hepatic encephalopathy. A psychometrical study. Scand. J. Gastroenterol. 12: 305–311, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Fazekas, J.F., Ticktin, H.E., Ehrmantraut, W. R., and Alman, R.W. Cerebral metabolism in hepatic insufficiency. Am. J. Med. 21: 843–849, 1956.PubMedCrossRefGoogle Scholar
  7. 7.
    Erbslöh, F., Bernsmeier, A., and Hillesheim, H.R. Der Glucoseverbrauch des Gehirns und seine Abhängigkeit von der Leber. Arch. Psychiatr. Nervenkr. 196: 611–626, 1958.CrossRefGoogle Scholar
  8. 8.
    Bianchi-Porro, G., Maiolo, A.T., and Delia Porta, P. Cerebral blood flow and metabolism in hepatic cirrhosis before and after portacaval shunt operation. Gut 10: 894– 897, 1969.PubMedCrossRefGoogle Scholar
  9. 9.
    Polli, E., Bianchi-Porro, G., and Maiolo, A.T. Cerebral metabolism after portacaval shunt. Lancet i, 153, 1969.CrossRefGoogle Scholar
  10. 10.
    Posner, J.P. and Plum, F. The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy. J. Clin. Invest. 39: 1246–1258, 1960.PubMedCrossRefGoogle Scholar
  11. 11.
    Maiolo, A.T., Porro, G.B., Galli, C., Sessa, M., and Polli, E.E. Brain energy metabolism in hepatic coma. Exp. Biol. Med., 4: 52–70, 1971.PubMedGoogle Scholar
  12. 12.
    Morgan, M.Y., Jakobovits, A.W., James, I.M., and Sherlock, S. Successful use of bromocriptine in the treatment of chronic hepatic encephalopathy. Gastroenterology 78: 663–670, 1980.PubMedGoogle Scholar
  13. 13.
    Bircher, J. The rat with portacaval shunt: an animal model with chronic hepatic failure. Pharmacol. Ther. 5: 219–222, 1979.CrossRefGoogle Scholar
  14. 14.
    Flynn, P.J. and Kennan, A.L. The rat with a portacaval anastomosis. Arch. Pathol. 85: 138–148, 1968.PubMedGoogle Scholar
  15. 15.
    Herz, R., Sautter, V., and Bircher, J. Fortuitous discovery of urate nephrolithiasis in rats subjected to portacaval anastomosis. Experientia 27–28, 1972.Google Scholar
  16. 16.
    Herz, R., Sautter, V., Robert, F. and Bircher, J. The Eck fistula rat: definition of an experimental model. Eur. J. Clin. Invest. 2: 390–397, 1972PubMedCrossRefGoogle Scholar
  17. 17.
    Tricklebank, M.D., Smart, J.L., Bloxam, D.L. and Curzon, G. Effects of chronic experimental liver dysfunction and L-tryptophan on behavior in the rat. Pharmacol. Biochem. Behav. 9: 181–189, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Warbritton, J.D. III,. Geyer, M.A., Jeppsson, B. and Fischer, J.E. Decreased startle reactivity in the end-toside portacaval shunted rat. Pharmacol. Biochem. Behav. 12: 739–742, 1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Küpfer, A. and Bircher, J. Mechanisms for the exaggerated sedative effect of pentobarbital in rats with experimental hepatic failure. Experientia 33: 807, 1977.Google Scholar
  20. 20.
    Mans, A.M,. Biebuyck, J.F., Davis, D.W., Bryan R.M., and Hawkins, R.A. Regional cerebral glucose utilization in rats with portacaval anastomosis. J. Neurochem. 40: 986–991, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Mans, A.M., Davis, D.W., Biebuyck, J.F. and Hawkins, R.A. Failure of glucose and branched-chain amino acids to normalize brain glucose use in portacaval shunted rats. J. Neurochem. 47: 1434–1443, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Cruz, N.F. and Duffy, T.E. Local cerebral glucose metabolism in rats with chronic portacaval shunts. J. Cereb. Blood Flow Metab. 3: 311–320, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Lockwood, A.H., Ginsberg, M.D., Rhoades, H.M. and Gutierrez, M.T. Cerebral glucose metabolism after portacaval shunting in the rat. J. Clin. Invest. 78: 86–95, 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Mans, A., Hawkins, R. and Biebuyck, J. Regional cerebral glucose utilization after portacaval shunting. J. Cereb. Blood Flow Metab. 4: 123–126, 1984.PubMedCrossRefGoogle Scholar
  25. 25.
    Eklöf, B., Holmin, T., Johannsson, H. and Siesjö, B.K. Cerebral blood flow and cerebral metabolic rate for oxygen in rats with portacaval anastomosis. Acta Physiol. Scand. 90: 337–344, 1974.PubMedCrossRefGoogle Scholar
  26. 26.
    Nieto, C., Arias, J., Alsasua, A. and Garia de Jalon, P.D. Changes in brain oxidative metabolism in rats with portacaval shunt. Experientia 36: 1403–1404, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Gjedde, A., Lockwood, A.M., Duffy, T.E. and Plum. F. Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effect of an acute ammonia challenge. Ann. Neurol. 3: 325–330, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Siesjö, B.K. Anaesthesia, analgesia and sedation. In: Brain Energy Metabolism, John Wiley & Sons, New York, pp. 233–265, 1978.Google Scholar
  29. 29.
    Davis, D.W. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental. Ph.D. Thesis, The Pennsylvania State University, 1987.Google Scholar
  30. 30.
    McCall, M.L. and Taylor, H.W. Effects of barbiturate sedation on the brain in toxemia of pregnancy. JAMA 149: 51–54, 1952.CrossRefGoogle Scholar
  31. 31.
    Mans, A.M., DeJoseph, M.R., Davis, D.W., Viña, J.R., and Hawkins, R.A. Early establishment of cereberal dysfunction after portacaval shunting. Am. J. Physiol. 259: E104 through E110, 1990.PubMedGoogle Scholar
  32. 32.
    Hawkins, R.A., Mans, A.M. and Biebuyck, J.F. Regional blood-brain barrier permeability in hepatic encephalopathy. J. Cereb. Blood Flow Metab. 1: 5385–5386, 1981.CrossRefGoogle Scholar
  33. 33.
    Mans, A.M., Biebuyck, J.F., Shelly, K. and Hawkins. R.A. Regional blood-brain barrier permeability to amino acids after portacaval anastomosis, J. Neurochem. 38: 705–717, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Schafer, D.F. Hepatic coma: studies on the target organ (editorial). Gastroenterology 93: 1131–1134, 1987.PubMedGoogle Scholar
  35. 35.
    Maddison, J.E., Dodd, P.R., Johnston, G. A.R. and Farrell, G.C. Brain gamma-aminobutyric acid receptor binding is normal in rats with thioacetamide-induced hepatic encephalopathy despite elevated plasma gamma-aminobutyric acid-like activity. Gastroenterology 93: 1062–1068, 1987.PubMedGoogle Scholar
  36. 36.
    Baraldi, M. Zeneroli, M.L., and Ventura, E. Supersensitivity of benzodiazepine receptors in hepatic failure in the rat: reversal by a benzodiazepine antagonist. Clin. Sci. 67: 167–175, 1984.PubMedGoogle Scholar
  37. 37.
    Mullen, K.D., Martin, J.V., Mendelson, W.B., Bassett, M.L. and Jones, E.A. Could an endogenous benzoadizepine ligand contribute to hepatic encephalopathy? Lancet i, 457–459, 1988.CrossRefGoogle Scholar
  38. 38.
    Basile, A.S., Gammal, S.H., Jones. E. A. and Skolnick, P. GABA-A receptor complex in an experimental model of hepatic encephalopathy: evidence for elevated levels of an endogenous benzodiazepine receptor ligand. J. Neurochem. 53: 1057–1063, 1989.PubMedCrossRefGoogle Scholar
  39. 39.
    Butterworth. R.F., Lavoie, J., Peterson, C., Cotman, C.W. and Szerb, J.C. Excitatory amino acids and hepatic encephalopathy, in Hepatic Encephalopathy; pathophysiology and treatment (R.F. Butterworth and B.P. Layrargues, eds.) pp. 417–433, Humana Press, Clifton, New Jersey, 1989.Google Scholar
  40. 40.
    Martinez-Hernandez, A., Bell, K.P. and Norenberg, M.D. Glutamine synthetase: glial localization in brain. Science 195: 1356–1358, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Cooper, A., McDonald, J., Gelbard, A., Gledhill, R.F. and Duffy, T. The metabolic fate of 13N-labeled ammonia in rat brain. J. Biol. Chem. 254: 4982–4992, 1979.PubMedGoogle Scholar
  42. 42.
    Hawkins, R.A., Miller, A.L., Nielsen, R.C. and Veech, R.L. The acute action of ammonia on rat brain metabolism “in vivo”. Biochem. J. 134: 1001–1008, 1973.PubMedGoogle Scholar
  43. 43.
    Bessman, S. and Bessman, A. The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. Clin. Invest. 34: 622– 628, 1954.CrossRefGoogle Scholar
  44. 44.
    Hawkins, R.A. and Mans, A.M. Intermediary metabolism of carbohydrates and other fuels. Handbook of Neurochemistry 3: 259–294, 1983.Google Scholar
  45. 45.
    Hindfelt, B. and Siesjö, B.K. Cerebral effects of acute ammonia intoxication, Scand. J. Clin. Lab. Invest. 28: 365–374, 1971.PubMedCrossRefGoogle Scholar
  46. 46.
    McCandless, D.W. and Schenker, S. Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system. Exp. Brain Res. 44: 325–330, 1981.PubMedCrossRefGoogle Scholar
  47. 47.
    McCandless, D.W., Looney, G.A., Modak, A.T. and Stavinoha, W.B. Cerebral acetylcholine and energy metabo lism changes in acute ammonia intoxication in the lower primate Tupaia glis. J. Lab. Clin. Med. 106: 183–186, 1985.PubMedGoogle Scholar
  48. 48.
    Cooper, A. and Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67: 440–519, 1987.PubMedGoogle Scholar
  49. 49.
    Munro, H.N,. Fernstrom, J.D. and Wurtman, R.J. Insulin, plasma amino acid imbalance, and hepatic coma. Lancet i, 722–724, 1975.CrossRefGoogle Scholar
  50. 50.
    Fischer, J.E. and Baldessarini, R.J. False neurotransmitters and hepatic failure. Lancet ii, 75–79, 1971.CrossRefGoogle Scholar
  51. 51.
    Mans, A.M., Biebuyck, J.F., Davis, D.W. and Hawkins, R.A. Portacaval anastomosis: brain and plasma metabolite abnormalities and the effect of nutritional therapy. J. Neurochem. 43: 697–705, 1984.PubMedCrossRefGoogle Scholar
  52. 52.
    Cummings, M.G., Soeters, P.B., James, J.H., Keane, J.M. and Fischer, J.E. Regional brain indoleamine metabolism following chronic portacaval anastomosis in the rat. J. Neurochem. 27: 501–509, 1976.PubMedCrossRefGoogle Scholar
  53. 53.
    Curzon, G., Cantamaneni, B.D., Fernando, J.D., Woods, M.S. and Cavanagh, J.B. Plasma and brain tryptophan changes in experimental acute hepatic failure. J. Neurochem. 24: 1065–1070, 1975.PubMedCrossRefGoogle Scholar
  54. 54.
    Baldessarini, R.J. and Fischer, J.E. Serotonin metabolism in rat brain after surgical diversion of the portal venous circulation. Nature 245: 25–27, 1973.CrossRefGoogle Scholar
  55. 55.
    Kamata, S., Okada, A., Watanabe, T., Kawashima, Y. and Wada, H. Effects of dietary amino acids on brain amino acids and transmitter amines in rats with a portacaval shunt. J. Neurochem. 35: 1190–1199, 1980.PubMedCrossRefGoogle Scholar
  56. 56.
    Simert, G., Nobin, A., Rosengren, E. and Vang, J. Neurotransmitter changes in the rat brain after portacaval anastomosis. Eur. Surg. Res. 10: 73–85, 1978.PubMedCrossRefGoogle Scholar
  57. 57.
    Alsasua, P.A. and Arias, J. Niveles de catecholamines en distintas estructuras del cerebro de rata tras anastomosis portocava. Arch. Pharmacol. Toxicol. V: 97–102, 1979.Google Scholar
  58. 58.
    Dodsworth, J.M., James, J.H., Cummings, M.C. and Fischer, J.E. Depletion of brain noradrenaline in acute coma. Surgery 75: 811–820, 1974.PubMedGoogle Scholar
  59. 59.
    Zieve, L. and Olsen, R.L. Can hepatic coma be caused by a reduction of brain noradrenaline or dopamine? Gut 18: 688–691, 1977.PubMedCrossRefGoogle Scholar
  60. 60.
    Hoyumpa, A.M. and Schenker, S. Perspectives in hepatic encephalopathy. J. Lab. Clin. Med. 100: 477–487, 1982.PubMedGoogle Scholar
  61. 61.
    Mans, A.M. and Hawkins, R.A. Brain monoamines after portacaval anastomosis. Metab. Brain Dis. 1: 45–52, 1986.PubMedCrossRefGoogle Scholar
  62. 62.
    Bloxam, D.L. and Curzon, G. A study of proposed determinants of brain tryptophan concentration in rats with portacaval anastomosis or sham-operation. J. Neurochem. 31: 1255–1263, 1978.PubMedCrossRefGoogle Scholar
  63. 63.
    James, J.H., Hodgman, J.M., Funovics, J.M., Yoshimura, N. and Fischer, J.E. Brain tryptophan, plasma-free tryptophan and distribution of plasma neutral amino acids. Metabolism 25: 471–476, 1976.PubMedCrossRefGoogle Scholar
  64. 64.
    Brightman, M.W. and Reese, T.S. Junctions between intimately opposed cell membranes in the vertebrate brain. J. Cell Biol. 40: 648–677, 1969.PubMedCrossRefGoogle Scholar
  65. 65.
    Pardridge, W.M. Brain metabolism: A perspective from the blood-brain barrier. Physiol. Rev. 63: 1481–1535, 1983.PubMedGoogle Scholar
  66. 66.
    Hawkins, R.A. and Biebuyck, J.F. Ketone bodies are se lectively used by individual brain regions. Science 205: 325–327, 1979.PubMedCrossRefGoogle Scholar
  67. 67.
    Bryan, R.M., Keefer, K.A. and MacNeill, C. Regional cerebral glucose utilization during insulin-induced hypoglycemia in anesthetized rats. J. Neurochem. 46. 1904– 1911, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    James, J.H., Escourrou, J. and Fischer, J.E. Blood-brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 200: 1395–1397, 1978.PubMedCrossRefGoogle Scholar
  69. 69.
    Hawkins, R.A., Mans, A.M. and Biebuyck, J.F. Alterations in amino acid transport across blood-brain barrier in rats following portacaval shunting, in Amino Acids: Metabolism and Medical Applications, pp. 239–253, John Wright, PSG In., Boston, 1983.Google Scholar
  70. 70.
    Sarna, G.S., Bradbury, M.W.B., Cremer, J.E., Lai, J.C.K. and Teal, H.M. Brain metabolism and specific transport at the blood-brain barrier after portacaval anastomosis in the rat. Brain Res. 160: 69–83, 1979.PubMedCrossRefGoogle Scholar
  71. 71.
    Zanchin, G., Rigotti, P., Dussini, N., Vassanelli, P., and Battistin, L. Cerebral amino acid levels and uptake in rats after portacaval anastomosis: II. Regional studies “in vivo”. J. Neurosci. Res. 4: 301–310, 1979.PubMedCrossRefGoogle Scholar
  72. 72.
    Livingston, A.S., Potvin, M., Goresky, C.A., Finlayson, M.H. and Hinchey, E.J. Changes in the blood-brain barrier in hepatic coma after hepatectomy in the rat. Gastroenterology 73: 697–704, 1977.Google Scholar
  73. 73.
    Mans, A.M., Biebuyck, J.F., Saunders, S.J., Kirsch, R.E. and Hawkins, R.A. Tryptophan transport across the blood-brain barrier during acute hepatic failure. J. Neurochem. 33: 409–418, 1979.PubMedCrossRefGoogle Scholar
  74. 74.
    Brender, J., Andersen, P.E. and Rafaelsen. O.J. Blood-brain barrier transfer of D-glucose, L-leucine, and L-tryptophan in the rat. Acta Physiol. Scand. 93: 490–499, 1975.PubMedCrossRefGoogle Scholar
  75. 75.
    Etienne, P., Young, S.N. and Sourkes, T.C. Inhibition by albumin of tryptophan uptake by rat brain. Nature (London) 262: 144–145, 1976.CrossRefGoogle Scholar
  76. 76.
    James, J.H., Jeppsson, B., Ziparo, V. and Fischer, J.E. Hyperammonemia, plasma amino acid imbalance, and blood-brain amino acid transport: A unified theory of portalsystemic encephalopathy. Lancet ii, 772–775, 1979.CrossRefGoogle Scholar
  77. 77.
    Mans, A.M., Biebuyck, J.F. and Hawkins, R.A. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier. Am. J. Physiol. 245: C74–C77, 1983.PubMedGoogle Scholar
  78. 78.
    Ehrlich, M., Plum, F. and Duffy, T.E. Blood and brain ammonia concentrations after portacaval anastomosis. Effect of acute ammonia loading. J. Neurochem. 34: 1538–1542, 1980.PubMedCrossRefGoogle Scholar
  79. 79.
    Cavanagh, J.B. Liver bypass and the glia, in Brain Dysfunction in Metabolic Disorders, pp. 13–38, Raven Press, New York, 1974.Google Scholar
  80. 80.
    Cancilla, P.A. and DeBault, L.E. Neutral amino acid transport properties of cerebral endothelial cells “in vitro”. J. Neuropathol. Exp. Neurol. 42: 191–199, 1983.PubMedCrossRefGoogle Scholar
  81. 81.
    DeBault, L.E. ŏ-Glutamyltranspeptidase induction mediated by glial foot process-to-endothelium contact in coculture. Brain Res. 220: 432–435, 1981.PubMedCrossRefGoogle Scholar
  82. 82.
    DeBault, L.E. and Cancilla, P.A. Induction of ŏ-Glutamyl transpeptidase in isolated cerebral endothelial cells. Adv. Exp. Med. Biol. 131: 79–88, 1980.PubMedGoogle Scholar
  83. 83.
    DeBault, L.E. and Cancilla, P.A. γ-Glutamyl transpeptidase in isolated brain endothelial cells: Induction by glial cells “in vitro”. Science 207: 653–655, 1980.PubMedCrossRefGoogle Scholar
  84. 84.
    Vinters, H.V., Beck, D.W., Bready, J.V., Maxwell, K., Berliner, J.A., Hart, M.N. and Cancilla, P.A. Uptake of glucose analogues into cultured cerebral microvessel endothelium. J. Neuropathol. Exp. Neurol. Vol 44, 5: 445– 458, 1985.PubMedCrossRefGoogle Scholar
  85. 85.
    Beck, D.W., Vinters, H.W., Hart, M.N. and Cancilla, P.A. Gial cells influence polarity of the blood-brain barrier. J. Neuropathol. Exp. Neurol. 43: 219–224, 1984.PubMedCrossRefGoogle Scholar
  86. 86.
    DeJoseph, M.R. and Hawkins, R.A. Glucose consumption decreases throughout the brain only hours after portacaval shunting. Am. J. Physiol. In Press.Google Scholar
  87. 87.
    Mans, A.M., DeJoseph, M.R., Davis, D.W. and Hawkins, R. A. Regional amino acid transport into brain during diabetes: effect of plasma amino acids. Am. J. Physiol. 253: E575–E583, 1987.PubMedGoogle Scholar
  88. 88.
    Freund, H., Dienstag, J., Lehrich, J., Yoshimura, N., Bradford, R.R., Rosen, H., Atamian, S., Slemmer, F., Holroyde, J. and Fischer, J.E. Infusion of branched-chain enriched amino acid solution in patients with hepatic encephalopathy. Ann. Surg. 196: 209–222, 1982.PubMedCrossRefGoogle Scholar
  89. 89.
    Fischer, J.E. and Baldessarini, R.J. Pathogenesis and therapy of hepatic coma, in Progress in Liver Diseases, Vol. V: 363–397, Grune and Stratton, New York, 1976.Google Scholar
  90. 90.
    Kleinberger, G., Ferenci, P., Gassber, A., Lochs, H., Pall, H.and Pichler, M. Behandlung des Coma hepaticum durch vollstandige parenterale Ernahrung and L-Valin. Schweiz. Med. Wochenschr. 107: 1639, 1977.Google Scholar
  91. 91.
    Riederer, P., Jellinger, K., Kleinberger, G. and Weiser, M. Oral and parenteral nutrition with L-valine: Mode of action. Nutr. Metab. 24: 209–217, 1980.PubMedCrossRefGoogle Scholar
  92. 92.
    Rossi-Fanelli, F., Angelico, M. , Cangiano, C., Cascino, A., Capocaccia, R., DeConciliis, D., Riggio, O. and Capocaccia, L. Effect of glucose and/or branched-chain amino acid infusion on plasma amino acid imbalance in chronic liver failure. J. Parenter. Enteral Nutr., 414– 419, 1981.Google Scholar
  93. 93.
    Eriksson, L.S., Persson, H. and Wahren, J. Branched-chain amino acids in the treatment of chronic hepatic encephalopathy. Gut 23: 801–806, 1982.PubMedCrossRefGoogle Scholar
  94. 94.
    Wahren, J., Denis, J., Desurmont, P., Eriksson, L.S., Escoffier, J.M., Gauthier, A.P., Hagenfeldt, L., Michel, H., Opolon, P., Paris, J.C. and Veyrac, M. Is intravenous administration of branched-chain amino acids effective in the treatment of hepatic encephalopathy? A multicenter study. Hepatology 3: 475–480, 1983.PubMedCrossRefGoogle Scholar
  95. 95.
    Freund, H., Yoshimura, N., and Fischer, J.E. Chronic hepatic encephalopathy. Long-term therapy with a branched-chain amino-acid-enriched elemental diet. JAMA 242: 347– 349, 1979.PubMedCrossRefGoogle Scholar
  96. 96.
    Horst, D,. Grace, N.D., Conn. H.O., Schiff, E., Schenker, S., Viteri, A., Law, D. and Atterburg, C.E. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: A randomized controlled trial. Hepatology 4: 279–287, 1984.PubMedCrossRefGoogle Scholar
  97. 97.
    Egberts, W.H., Schomerus, H., Hamster, W. and Jurgens, P. Branched-chain amino acids in the treatment of latent portosystemic encephalopathy. A double-blind, placebo-controlled crossover study. Gastroenterology 88: 887–895, 1985.PubMedGoogle Scholar
  98. 98.
    Sieg, A., Walker, S., Czygan, P., Gartner, U., Lanzinger-Rossnagel, G., Stiehl, A. and Kommerell, B. Branchedchain amino acid-enriched elemental diet in patients with cirrhosis of the liver. A double-blind crossover trial. Z. Gastroenterol. 21: 644–650, 1983.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Richard A. Hawkins
    • 1
  • Anke M. Mans
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Health Sciences The Chicago Medical SchoolNorth ChicagoUSA

Personalised recommendations