Epigenetic Factors Influencing the Morphogenesis of Primary Neural Cell Cultures and the Concomitant Effects on Establishing JHMV Infections

  • J. M. M. Pasick
  • S. Dales
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


The murine Coronavirus, JHM, produces a spectrum of disease in the postnatal rat ranging from an acute encephalomyelitis to a delayed onset disease clinicopathologically characterized by limb paresis progressing to paralysis, with associated foci of demyelination within white matter tracts of the rhombencephalon and spinal cord. The type of disease predominating in intracerebrally inoculated rat pups was found by previous work in our laboratory to be a function of the following host determinants: strain of animal challenged, age at which the animal was inoculated and the host–s immunologic status (1,2,3). Other parameters such as the phenotype of the virion–s major envelope glycoprotein, E2 (4,5,6) and the length of the latent period or time elapsing between inoculation and development of disease (1), are examples of other determinants involved in the pathogenic outcome of virus challenge in vivo.


Demyelinating Disease Intracellular cAMP Level Multiple Sclerosis Society Oligodendrocyte Lineage Delay Onset Disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Sorensen, D. Percy, and S. Dales, In vivo and in vitro models of demyelinating diseases III. JHM virus infections of rats, Archives of Neurol. 37:478–484 (1980).CrossRefGoogle Scholar
  2. 2.
    O. Soresen, R. Dugre, D. Percy, and S. Dales, In vivo and in vitro models of demylinating disease: Endogenous factors, influencing demyelinating disease caused by mouse hepatitis virus in rats and mice, Infect. and Immun. 37:1248–1260 (1982).Google Scholar
  3. 3.
    M. J. Zimmer, and S. Dales, In vivo and in vitro models of demyelinating diseases XXIV. The infectious process in cyclosporin A treated wistar lewis rats inoculated with JHMV virus, Microbial Path. 6:7–16 (1989).CrossRefGoogle Scholar
  4. 4.
    H. Wege, J. Winter, and R. Meyermann, The peplomer protein E2 of Coronavirus JHMV as a determinant of neurovirulence: Definition of critical epitopes by variant analysis, J. Gen. Virol. 69:87–98 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    M. J. Buchmeier, R. G. Dalziel, and M. J. M. Koolen, Coronavirus-induced CNS disease: a model for virus-induced demyelination, J. Neuro immunol20:111–116 (1988).Google Scholar
  6. 6.
    V. L. Morris, C. Tieszer, J, Mackinnon, and D. Percy, Characterization of Coronavirus JHM variants isolated from wistar furth rats with a viral-induced demyelinating disease, Virology169:127–136 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Beushausen, and S. Dales, In vivo and in vitro models of demyelinating disease XI. Tropism and differentiation regulate the infectious process of coronaviruses in primary explants of the rat CNS, Virology. 141:89–101 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Beushausen, S. Narindrasorasak, B. D. Sanwal, and S. Dales, In vivo and vitro models of demyelinating disease: Activation of the adenylate cyclase system influences JHM virus expression in explanted rat oligodendrocytes, J. Virol. 61:3795–3803 (1987).PubMedGoogle Scholar
  9. 9.
    W. D. Richardson, N. Pringle, M. J. Mosley, B. Westermark, and M. Dubois-Dalcy, A role for platelet-derived growth factor in normal gliogenesis in the central nervous system, Cell. 53:309–319 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Noble, K. Murray, P. Stroobant, M. D. Waterfield, and P. Riddle, Platelet-derived growth factor promotes division and mobility and inhibits premature differentiation of the oligodendrocyte/type 2 astrocyte progenitor cell, Nature. 333:560–562 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    M. C. Roff, L. E. Lillien, W. D. Richardson, J. F. Burne, and M. D. Noble, Platelet-derived growth factor from astroytes drives the clock that times oligodendrocyte development in culture, Nature. 333:562–565 (1988).CrossRefGoogle Scholar
  12. 12.
    T. Bahar, F. A. McMorris, E. A. Novotny, J. L. Barker, and M. Dubois-Daley, Growth and differentiation properties of 0–2A progenitors purified from rat cerebral hemispheres, J. Neurosci Res. 21; 168–180 (1988).CrossRefGoogle Scholar
  13. 13.
    F. A. McMorris and M. Dubois-Dalcy, Insulin-like growth factor promotes cell proliferation and oligodendrogial commitment it rat glial pronitor cells developing in vitro, J. Neurosci. Res. 21:168–180 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    F. A. McMorris, T. M. Smith, S. DeSalvo, and R. Furlanetto, Insulin-like growth factor I/somatomedin C: A potent inducer of oligodendrocyte development, Proc. Natl. Acad. Sci. USA 83:822–826 (1986).CrossRefGoogle Scholar
  15. 15.
    R. H. M. van der Pal, J. W. Koper, L. M. G. van Golde, and M. Lopes-Cardozo, Effects of insulin-like growth factor (IGF-I) on oligodendrocyte-enriched glial cultures, J. Neurosci. Res19:483–490 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    P. A. Eccleston, and D. H. Silberberg, The differentiation of oligodendrocytes in a serum-free hormone-supplemented medium, Develop. Brain Res. 16:1–9 (1984).CrossRefGoogle Scholar
  17. 17.
    R. P. Saneto, and J. DeVellis, Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium, Proc. Natl. Acad. Sci. U.S.A. 82:3509–3513 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    J. W. Koper, M. Lopes-Cardozo, H. J. Romijn, and L. M. G. Van Golde, Culture of rat cerebral oligodendrocytes in a serum-free, chemically defined medium, J. Neurosci. Methods. 10: 157–169 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    J. E. Bottenstein, Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes, Pro. Natl. Acad. Sci. U.S.A. 83:1955–1959 (1986).CrossRefGoogle Scholar
  20. 20.
    A. L. Gard and S. E. Pfeiffer, Oligodendrocyte progenitors isolated directly from developing telencephalon at a specific phenotypic stage: myelinogenic potential in a defined environment, Development 106:119–132 (1989).PubMedGoogle Scholar
  21. 21.
    J. E. Bottenstein, and G. H. Sato, Growth of a rat neuroblastmoma cell line in serum-free supplemented medium, Proc. Natl. Acad. Sci. U.S.A. 76:514–517 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Garza, J. H. Dussault, and J. Puymirat, Influence of triiodothyronine (L-T3) on the morphological and biochemical development of fetal brain acetycholinesterase-positive neurons cultured in a chemically defined medium, Develop. Brain Res. 43:287–297 (1988).CrossRefGoogle Scholar
  23. 23.
    A. J. Patel, M. Hayashi, and A. Hunt, Role of thyroid hormone and nerve growth factor in the development of choline acetyltransferase and other cell-specific marker enzymes in the basal forebrain of the rat, J. Neurochem50:803–811 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Rami, A Rabie, and A, J. Patel, Thyroid hormone and development of the rat hippocampus: Cell acquisition in the dentate gyrus, Neuroscience19:1207–1216 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Rami, A. J. Patel, and A. Ralsie, Thyroid hormond and development of the rat hippocampus: Morphological alterations in gramule and pyramidal cells, Neuroscience 19: 1217–1226 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    J. W. Koper, R. C. Hoeben, F. M. H. Hachstenback, L. M. G. Van Golde, and M, Lopes-Cardozo, Effects of triiodothyromine on the synthesis of sulfolipids by oligodendroyte-enriched glial cultures, Biochim. et Biophys. Acta 887:321–334 (1986).Google Scholar
  27. 27.
    F. Courtin, F. Chantoux, and J. Franeon, Thyroid hormone metabolism by glial cells in primary culture, Mol. Cell. Endocrin. 48:167–178 (1986).CrossRefGoogle Scholar
  28. 28.
    G. S. Eisenbarth, F. S. Walsh, and M. Nirenberg, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. U. S. A. 76:4913–4917 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    M. C. Raff, R. H. Miller, M. Noble, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium, Nature 303:390–396 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    I. Nagata, G. Keilhauer, and M. Schachner, Neuronal influence on antigenic marker profile, cell shape and proliferation of cultured astrocytes obtained by microdisection of distinct layers from the postnatal mouse cerebellum, Develop. Brain Res. 24: 217–232 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. M. Pasick
    • 1
  • S. Dales
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Western OntarioLondonCanada

Personalised recommendations