Advertisement

Fc Receptor-Like Activity of Mouse Hepatitis Virus E2 Glycoprotein

  • Emilia L. Oleszak
  • Julian L. Leibowitz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

The JHM strain of mouse hepatitis virus (MHV-JHM) is a member of the Coronavirus family, which experimentally induces encephalomyelitiS in susceptible mice and rats. In surviving animals a chronic white matter disease ensues. The development of demyelinating lesions is thought to be a primary effect of infection of oligodendrocytes.2, 3 MHV-JHM virus has been shown to persist in the infected brain as long as 1 year after infection. Persistent infections of mice with other strains of MHV such as MHV-A59 and MHV-3 have also been reported.4,5,6 Murine coronaviruses have four structural proteins: a matrix like transmembrane glycoprotein (El), a nucleocapsid protein (N), a peplomer protein (E2), and for some laboratory strains of MHV-JHM a 65,000 Daglycoprotein. 7,8 The E2 glycoprotein (180,000 Da) is responsible for the attachment of MHV to the host cell plasma membrane, induction of cell-to-cell fusion and eliciting of the production of neutralizing antibody. 9,10 In the course of immunological staining of MHV-infected cells with rabbit antisera we observed at moderate dilution (1:50 – 1:100) normal and preimmune serum stained MHV-JHM infected, but not uninfected, cells. This staining could not be removed by absorption of rabbit antiserum with uninfected cells. This observation suggested that infection of cells with MHV may result in the expression of receptors for the Fc region of immunoglobulin G (IgG).

Keywords

Herpes Simplex Virus Type Uninfected Cell Mouse Hepatitis Virus Murine Hepatitis Virus Staphylococcus Aureus Cowan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Sorensen, R. Dugre, D. Percy, and S. Dales, In vivo and in vitro models of demyelinating diseases: endogenous factors influencing demyelinating disease caused by murine hepatitis virus in rats and mice. Infect. Immun. 37: 1248 (1982).PubMedGoogle Scholar
  2. 2.
    P. W. Lampert, J. K. Sims, and A. J. Kniazeff, Mechanism of demyelination in JHM virus encephalomyelitis. Electron microscope studies. Acta. Neuro. Pathol. 24:76 (1976).Google Scholar
  3. 3.
    H. S. Wege, S. Sidell, and V. ter Meulen, The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunobiol. 99:165 (1982).CrossRefGoogle Scholar
  4. 4.
    C. LePrevost, J. L. Virelizier, and J. M. Dupuy, Immunopathology of mouse hepatitis virus type 3 infection. III. Clinical and virologic observation of persistent viral infection. J. Immunol. 115:640 (1975).PubMedGoogle Scholar
  5. 5.
    T. Tamura, F. Taguchi, K. Veda, K. Fujiwara, Persistent infection with mouse hepatitis virus of low virulence in nude mice. Microbiol. Immunol. 21:683 (1977).PubMedGoogle Scholar
  6. 6.
    J. L. Virelizier, Pathogenicity and persistence of mouse hepatitis virus in inbred strains of mice. In: Biochemistry and Biology of Coronaviruses (Adv. Exp. Biol, and Med., Vol. 142), Ter Meulen, V., Siddell, S., Wege, H. (eds.), 349–358, Plenum Press, New York (1981).Google Scholar
  7. 7.
    S. Siddell, H. Wege, A. Barthel, and V. ter Meulen, Coronavirus JHM: intracellular protein synthesis. J. Gen. Virol 53:145 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    C. W. Bond, K. Anderson, and J. L. Leibowitz, Protein synthesis in cells infected by murine hepatitis viruses JHM and A:59. Tryptic peptide analysis. Arch. Virol. 80:333 (1984).Google Scholar
  9. 9.
    A. R. Collins, R. L. Knobler, H. Powell, and M. J. Buchmeier, Monoclonal antibodies to murine hepatitis virus 4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 119:358 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    L. S. Sturman, C. S. Ricard, and K. V. Holmes, Proteolytic cleavage of the E2 glycoprotein of murine Coronavirus: activition of ce l-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 56:904 (1985).PubMedGoogle Scholar
  11. 11.
    J. F. Watkins, Adsorption of sensitized sheep erythrocytes to HeLa cells infected with Herpes simplex virus. Nature 202:1364 (1964).PubMedCrossRefGoogle Scholar
  12. 12.
    D. C. Johnson, M. C. Frame, M. W. Ligas, A. M. Cross and N. D. Stew, Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J. Virol. 62:1347 (1988).PubMedGoogle Scholar
  13. 13.
    K. H. Rothels, A. A. Axelrad, L. Siminovitch, F. A. McCulloch, and R. C. Parker, The origin of altered cell lines from mouse, monkey, and man as indicated by chromosome and transplantation studies. Can. Cancer Conf. 3:189 (1959).Google Scholar
  14. 14.
    P. M. Hogarth, M. L. Hibbs, L. Bonadonna, B. M. Scott, E. Witort,G. A. Pietersz, and I. F. C. McKenzie, The mouse Fc receptor for IgG (Ly-17): molecular cloning and specificity. Immunogenetics 26:161 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    G. A. Levy, J. L. Leibowitz, and T. S. Edgington, The induction of monocyte procoagulant activity by murine hepatitis virus (MHV-3) parallels disease susceptibility in mice. J. Exp. Med. 154:1150 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    J. L. Leibowitz, J. D. DeVries, and M. Rodriguez, Increased hepa-totropism of mutants of MHV, strain JHM, selected with monoclonal antibodies. Adv. Exp. Med. Biol. 218, 321–331, M.M.C. Lai and S. A. Stohlman, eds. Plenum Press, New York, NY. (1986).Google Scholar
  17. 17.
    J. C. Unkeless, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150:580 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    U. K. Laemmli, and M. Favre, Maturation of the head of bacteriophage T4. I. DNA packaging events. J. Mol. Biol. 80:575 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    D. W. Cleveland, S. G. Fischer, M. W. Kirschner, and U. K. Laemmli, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252:1102 (1977).PubMedGoogle Scholar
  20. 20.
    T. Dyrberg, and M. B. A. Oldstone, Peptides as probes to study molecular mimicry and virus-induced autoimmunity. Curr. Top. Microbiol. Immunobiol. 130:25 (1986).CrossRefGoogle Scholar
  21. 21.
    M. B. A. Oldstone, Molecular mimicry and autoimmune disease. Cell 50:819 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Froese, and F. Paraskevas, Structure and function of Fc receptors, Dekker, New York (1983).Google Scholar
  23. 23.
    C. F. Nathan, H.W. Murray, and Z. A. Cohn, The macrophage as an effector cell. N. Engl. J. Med. 303:622 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    I.S. Mellman, H. Plutner, R. Steinman, J. C. Unkelles, and Z.A. Cohn, Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J. Cell Biol. 96:887 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    R. G. Q. Leslie, Complex aggregation: a critical event in macrophage handling of soluble immune complexes. Immun. Today 6:183 (1985).CrossRefGoogle Scholar
  26. 26.
    A. F. Williams, and A. N. Barclay, The immunoglobulin superfamily-domains for cell surface recognition. Ann. Rev. Immunol 6:381 (1988).CrossRefGoogle Scholar
  27. 27.
    M. Ogata, and S. Shigeta, Appearance of immunoglobulin G Fc receptor in cultured human cells infected with varicella-zoster virus. Infect. Immun. 26:770 (1979).PubMedGoogle Scholar
  28. 28.
    M. F. Para, L. Goldstein, and P. G. Spear, Similarities and differences in the Fc binding glycoprotein (gE) of Herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J. Virol. 41:137 (1982).PubMedGoogle Scholar
  29. 29.
    T. Murayama, S. Natsuume-Sakai, K. Shimokawa, and T. Furnakawa, Fcreceptor(s) induced by human cytomegalovirus bind differentially with human immunoglobulin G subclasses. J. Gen. Virol. 67:1475 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Eizuru, and Y. Minamishima, Induction of Fc (IgG) receptor(s) by simian cytomegaloviruses in human embryonic lung fibroblasts. Intervirol. 29:339 (1988).Google Scholar
  31. 31.
    D. C. Johnson, and V. Feenstra, Indentification of a novel Herpes simplex virus type 1 -induced glycoprotein which complexes with gE and binds immunoglobulin. J. Virol. 61:2208 (1987).PubMedGoogle Scholar
  32. 32.
    M. 0. Dayhoff, W. C. Barker, and L. T. Hunt, Establishing homologies in protein sequences. Methods Enzymol. 91: 524 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    R. Adler, J. C. Glorioso, J. Cossman, and M. Levine, Possible role of Fc receptors on cells infected and transformed by Herpesviruses: Escape from immune cytolysis. Infect. Immun. 21:442 (1978).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Emilia L. Oleszak
    • 1
  • Julian L. Leibowitz
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations