Characterization and Location of the Structural Polypeptides of Turkey Enteric Coronavirus Using Monoclonal Antibodies and Enzymatic Treatments

  • Serge Dea
  • Simon Garzon
  • Peter Tijssen
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


Turkey enteric Coronavirus (TCV) is one of the major causes of epidemic diarrhoea in turkey poults (1, 2). The morphological and physicochemical characteristics of TCV resemble those of other members of the family Coronaviridae (3, 4). However, little is known with respect to the molecular and antigenic structure of the TCV virion, due to difficulties in propagating TCV strains in tissue cultures and lack of highly specific immunological probes (1, 4). Field isolates can be propagated by oral inoculation and intestinal infections of young turkey poults, or by inoculation into embryonating turkey eggs (4, 5). TCV possesses a hemagglutinating (HA) activity which may be associated to short granular projections located near the base of the characteristic larger bulbous peplomers (6). Recently, we adapted TCV isolates in HRT-18 cells, an established cell line derived from human rectum adenocarcinoma (7). In these cells, TCV induces cytopathic changes, including polykaryocytosis, which depended on trypsin in the culture medium (8).


Infectious Bronchitis Virus Western Immunoblotting Infectious Bronchitis Virus Strain Polypeptide Structure Turkey Poult 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. S. Pomeroy. Coronaviral enteritis of turkeys, in: Disease of poultry, 8th ed. M. S. Holstad, H. J. Barnes, B. W. Calnek, W. M. Reid, and H. W. Yoder, ed., Iowa State Univ. Press, Ames (1984).Google Scholar
  2. 2.
    S. Dea and P. Tijssen. Viral agents associated with outbreaks of diarrhea in turkey flocks in Quebec. Can. J. Vet.Res. 52:53 (1988)PubMedGoogle Scholar
  3. 3.
    D. R. Deshmukh and B. S. Pomeroy. Physicochemical characterization of a bluecomb Coronavirus of turkeys. Am. J. Vet. Res. 35: 1549 (1977).Google Scholar
  4. 4.
    A. E. Ritchie, D. R. Deshmukh, C. T. Larsen, and B. S. Pomeroy. Electron microscopy of coronavirus-like particles characteristic of turkey bluecomb disease. Avian Dis. 17:546 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    D. R. Deshmukh, C. T. Larsen, and B. S. Pomeroy. Survival of Bluecomb agent in embryonating turkey eggs and cell cultures. Am. J. Vet. Res. 34:673 (1973).PubMedGoogle Scholar
  6. 6.
    S. Dea and P. Tijssen. Identification of the structural proteins of turkey enteric Coronavirus. Arch. Virol. 99: 173 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    W. A. F. Tompkins, A. W. Watrach, J.D. Schmale, R.M. Schultz, and J.A. Harris. Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J. Natl. Cancer Inst. 52:101 (1974).Google Scholar
  8. 8.
    S. Dea, S. Garzon, and P. Tijssen. Isolation and trypsin-enhanced propagation of turkey enteric (Bluecomb) coronaviruses in a continuous human rectal tumor (HRT-18) cell line. Am. J. Vet. Res. (In press).Google Scholar
  9. 9.
    S. Dea and P. Tijssen. Antigenic and polypeptide structure of turkeyenteric coronaviruses as defined by monoclonal antibodies. J. Gen. Virol. (In press).Google Scholar
  10. 10.
    S. Dea and P. Tijssen. Detection of turkey enteric Coronavirus by enzyme-linked immunosorbent assay and differenhtiation from other coronaviruses. Am. J. Vet. Res. 50:226 (1989).PubMedGoogle Scholar
  11. 11.
    H. Laude, J.M. Chapsal, J. Gelfi, S. Labiau, and J. GrosClaude. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 67:119 (1986).Google Scholar
  12. 12.
    D. Deregt and L. A. Babiuk. Monoclonal antibodies to bovine Coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins.Virology 161:410 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Dea, S. Garzon, and P. Tijssen. Intracellular synthesis and processing of the structural glycoproteins of turkey enteric Coronavirus. Arch. Virol. (In press).Google Scholar
  14. 14.
    D. F. Stern and B.M. Sefton. Coronavirus proteins: structure and functions of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 44:804 (1982).PubMedGoogle Scholar
  15. 15.
    D. Cavanagh, P. J. Davis, D. J. C. Pappin, M. M. Binns, M. E. G. Boursnell, and T. D. K. Brown. Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor polypeptide of IBV strains Beaudette and M41. Virus Res. 4:133 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    B. G. Hogue, B. King, and D. A. Brian. Antigenic relationships among proteins of bovine Coronavirus, human respiratory Coronavirus OC 43, and mouse hepatitis Coronavirus A59. J. Virol. 51:384 (1984).PubMedGoogle Scholar
  17. 17.
    B. King, B. J. Potts, and D.A . Brian. Bovine Coronavirus hemagglutinin protein. Virus Res. 2:53 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    W. Lapps, B. G. Hogue, and D. A. Brian. Sequence analysis of the bovine Coronavirus nucleocapsid and matrix protein genes. Virology 157:47 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    W. Luytjes, L. S. Sturman, P. J. Bredenbeek, J. Charite, B. A. M. Van der Zeijst, M. C. Horzinek, and W. J. M. Spaan. Primary structure of the glycoprotein E2 of Coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    L. S. Sturman and K. V. Holmes. The molecular biology of coronaviruses. Adv. Virus Res. 56:904 (1983).Google Scholar
  21. 21.
    M. E. G. Boursnell, T. D. K. Brown, and M. M. Binns. Sequence of the membrane protein gene from avian Coronavirus IBV. Virus Res. 1:303 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    P. J. M. Rottier, M. C. Horzinek, and B. A. M. Van Der Zeijst. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 40:350 (1981).PubMedGoogle Scholar
  23. 23.
    H. Nieman and H. D. Klenk. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 153:993 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Serge Dea
    • 1
  • Simon Garzon
    • 1
  • Peter Tijssen
    • 1
  1. 1.CRMC, Institute Armand-FrappierUniversity of QuebecLaval-des-RapidesCanada

Personalised recommendations