Advertisement

Genomic Organisation of a Virulent Isolate of Porcine Transmissible Gastroenteritis Virus

  • P. Britton
  • K. W. Page
  • D. J. Pulford
  • D. J. Garwes
  • K. Mawditt
  • F. Stewart
  • F. Parra
  • C. Lopez Otin
  • J. Martin Alonso
  • R. S. Carmenes
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Transmissible gastroenteritis virus (TGEV) causes gastroenteritis in pigs of all ages but has a high mortality in neonatal piglets. In piglets, under two weeks of age, the first clinical sign is usually vomiting 18–24 h after infection rapidly followed by a diarrhoea, resulting in loss of weight and dehydration; death usually occurs after 2–5 days (1). Like all the other coronaviruses TGEV proteins are expressed from a ‘nested’ set of subgenomic mRNAs which have common 3′ termini but different 5′ extensions. The region of each mRNA responsible for the expression of a protein appears to correspond to the 5′-terminal region that is absent on the preceding smaller species. Mouse hepatitis virus (MHV) and infectious bronchitis virus (IBV) mRNA species contain identical short non-coding sequences at their 5′ ends, specific to each virus, which appear to be joined to the sequences encoding the virual genes by discontinuous transcription. A consensus sequence identified upstream of each gene/ORF may act as a binding site for the RNA polymerase-leader complex (2, 3, 4, 5, 6). It has been previously postulated that a heptameric sequence , ACTAAC (7) or a hexameric sequence, CTAAAC (8, 9, 10) may be involved in the binding of the TGEV RNA polymerase-leader complex. The TGEV virion contains three major structural polypeptides; a surface glycoprotein (spike or peplomer protein) with a monomeric Mr 200000, a glycosylated integral membrane protein observed as a series of polypeptides of Mr 28000–31000 and a basic phosphorylated protein (the nucleoprotein) of Mr 47000 associated with the viral genomic RNA (11).

Keywords

Integral Membrane Protein Infectious Bronchitis Virus Recombinant Vaccinia Virus Mouse Hepatitis Virus Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Garwes, Coronaviruses in Animals, in: “Virus infection of the gastrointestinal tract,” D. A. J. Tyrrell and A. Z. Kapikian, eds., Marcel Dekker Inc., New York (1982).Google Scholar
  2. 2.
    W. J. M. Spaan, H. Delius, M. Skinner, J. Armstrong, P. Rottier, S. Smeekens, B. A. M. van der Zeijst and S. G. Siddell, Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J., 2: 1839–1844 (1983).PubMedGoogle Scholar
  3. 3.
    T. D. K. Brown, M. E. G. Boursnell and M. M. Binns, A leader sequence is present on mRNA A of avian infectious bronchitis virus. J. Gen. Virol., 65:1437–1442 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    M. M. C. Lai, R. S. Baric, P. R. Brayton and S. A. Stohlman, Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proc. Nat. Acad. Sci., 81:3626–3630 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    C. J. Budzilowicz, S. P. Wilczynski and S. R. Weiss, Three intergenic regions of Coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3’ end of the viral mRNA leader sequence. J. Virol., 53:834–840 (1985).PubMedGoogle Scholar
  6. 6.
    C-K. Shieh, L. H. Soe, S. Makino, M-F. Chang, S. A. Stohlman and M. M. C. Lai, The 5’-end sequence of the murine Coronavirus genome: implications for multiple fusion sites in leader-primed transcription. Virology, 156:321–330 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Britton, R. S. Carmenes, K. W. Page, D. J. Garwes and F. Parra, Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol., 2:89–99 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    P. A. Kapke and D. A. Brian, Sequence analysis of the porcine transmissible gastroenteritis Coronavirus nucleocapsid protein gene. Virology, 151:41–49 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Rasschaert, B. Delmas, B. Charley, J. Grossclaude, J. Gelfi and H. Laude, Surface glycoproteins of transmissible gastroenteritis virus: functions and gene sequence. Adv. Exp. Med. Biol., 218:109–116 (1987).PubMedGoogle Scholar
  10. 10.
    D. Rasschaert, J. Gelfi and H. Laude, Enteric Coronavirus TGEV: partial sequence of the genomic RNA, its organisation and expression. Biochimie, 69:591–600 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    D. J. Garwes and D. H. Pocock, The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol., 29:25–34 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Britton, D. J. Garwes, G. C. Millson, K. Page, L. Bountiff, F. Stewart and J. Walmsley, Towards a genetically-engineered vaccine against porcine transmissible gastroenteritis virus. In: “Biomolecular Engineering in the European Community. Final Report,” E. Magnien, ed., Martinus Nijhoff, The Netherlands (1986).Google Scholar
  13. 13.
    D. J. Garwes, L. Bountiff, G. C. Millson and C. J. Elleman, Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Adv. Exp. Med. Biol., 173:79–93 (1984).PubMedGoogle Scholar
  14. 14.
    P. Britton, D. J. Garwes, K. Page and J. Walmsley, Expression of porcine transmissible gastroenteritis virus genes in E. coli as galactosidase chimaeric proteins. Adv. Exp. Med. Biol., 218:55–64 (1987).PubMedGoogle Scholar
  15. 15.
    P. Britton, R. S. Carmenes, K. W. Page and D. J. Garwes, The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: Molecular characterization, sequence and expression in Escherichia coli, Mol. Microbiol., 2:297–505 (1988).CrossRefGoogle Scholar
  16. 16.
    P. Britton, C. Lopez Otin, J. M. Martin Alonso and F. Parra, Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus, Arch. Virol., 105:(in press) (1989).Google Scholar
  17. 17.
    D. J. Garwes, F. Stewart and P. Britton, The polypeptide of M 14000 of porcine transmissible gastroenteritis virus: Gene assignment and intracellular location, J. Gen. Virol., 70: (in press) (1989).Google Scholar
  18. 18.
    D. J. Pulford, P. Britton, K. W. Page and D. J. Garwes, Expression of transmissible gastroenteritis virus structural genes by virus vectors, (This book).Google Scholar
  19. 19.
    W. H. Landschulz, P. F. Johnson and S. L. McKnight, The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins, Science, 240: 1759–1764 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    G. H. Hamm and G. N. Cameron, The EMBL data library, Nucl. Acids Res., 14:5–10 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    H. S. Bilofsky, C. Burks, J. W. Fickett, W. B. Goad, F. I. Lewitter, W. P. Rindone, C. D. Swindell and C-S. Tung, The Genbank genetic sequence database, Nucl. Acids Res., 13:1–4 (1986).CrossRefGoogle Scholar
  22. 22.
    W. R. Pearson and D. J. Lipman, Improved tools for biological sequence comparison, Proc. Nat. Acad. Sci., 85:2444–2448 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    R. J. De Groot, A. C. Adeweg, M. C. Horzinek and W. J. M. Spaan, Sequence analysis of the 3’ end of the feline Coronavirus FIPV 79–1146 genome: Comparison with the genome of porcine Coronavirus TGEV reveals large insertions, Virology, 167:370–376 (1988).PubMedGoogle Scholar
  24. 24.
    J. Devereux, P. Haeberli and 0. Smithies, A comprehensive set of sequence analysis programs for the VAX, Nucl. Acids Res., 12:387–395 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Staden, An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences, Nucl. Acids Res., 10:2951–2961 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    M. E. G. Boursnell, T. D. K. Brown, I. J. Foulds, P. F. Green, F. M. Tomley and M. M. Binns, Completion of the sequence of the genome of the Coronavirus avian infectious bronchitis virus, J. Gen. Virol., 68:57–77 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Britton
    • 1
  • K. W. Page
    • 1
  • D. J. Pulford
    • 1
  • D. J. Garwes
    • 1
  • K. Mawditt
    • 1
  • F. Stewart
    • 1
  • F. Parra
    • 2
  • C. Lopez Otin
    • 2
  • J. Martin Alonso
    • 2
  • R. S. Carmenes
    • 2
  1. 1.Compton LaboratoryAFRC Institute for Animal HealthCompton, Newbury, BerkshireUK
  2. 2.Departamento de Biologia Funcional (Area de Bioquimica)Universidad de OviedoOviedoSpain

Personalised recommendations