The Polymerase Gene of Corona- and Toroviruses: Evidence for an Evolutionary Relationship

  • Peter J. Bredenbeek
  • Eric J. Snijder
  • Ans F. H. Noten
  • Johan A. den Boon
  • Wim M. M. Schaaper
  • Marian C. Horzinek
  • Willy J. M. Spaan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


In this paper we demonstrate that the organization of the polymerase gene of toroviruses and coronaviruses is similar. The polymerase gene of both virus families consists of at least two large ORFs (la and lb). Four domains of conserved amino acid sequences have been identified in nearly identical positions in the 3’ ORF of the pol gene of toroviruses and coronaviruses. The most 3’ conserved domain which is still unique for these viruses encodes a 33-kDA protein in MHV-A59, which is cleaved from a precursor protein. Expression of ORFlb of the pol gene of both virus families occurs by ribosomal frameshifting. A predicted stem-loop structure and pseudoknot are conserved in the ORFla/ORFlb overlap of toro- and coronaviruses. On the basis of these results we postulate that toro- and coronaviruses are ancestrally more related to each other than to other families of positive stranded RNA viruses.


Infectious Bronchitis Virus Predicted Amino Acid Sequence Polymerase Gene Virus Family Equine Arteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strauss, J.H., and Strauss, E.G. (1983). Curr. Top. Microbiol. Immunol. 105, 1–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Goldbach, R., and We11ink, J. (1988). Intervirology 29, 260–267.PubMedGoogle Scholar
  3. 3.
    Strauss, J.H., and Strauss, E.G. (1988). Ann. Rev. Microbiol. 42, 657–683.CrossRefGoogle Scholar
  4. 4.
    Argos, P. (1988). Nucl. Acids Res. 16, 9909–9916.PubMedCrossRefGoogle Scholar
  5. 5.
    Hodgman, T.C. (1988). Nature 335, 22–23.CrossRefGoogle Scholar
  6. 6.
    Gorbalenya, A.E., and Koonin, E.V., Donchenko, A.P., and Blinov, V.M. (1988). FEBS LETT. 235, 16–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Boursnell, M.E., Brown, T.D., Foulds, I.J., Green, P.F., Tomley, F.M., and Binns, M.M. (1987). J. Gen. Virol. 68, 57–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Brierley, I., Boursnell, M.E., Binns, M.M., Bilimoria, B., Blok, V.C., Brown, T.D. and Inglis, S.C. (1987). EMBO. J. 6, 3779–3785.PubMedGoogle Scholar
  9. 9.
    Brierley, I., Diggard, P. and Inglis, S.C. (1989). Cell 57, 537–547.PubMedCrossRefGoogle Scholar
  10. 10.
    Gorbalenya, A.E., and Koonin, E.V., Donchenko, A.P., and Blinov, V.M. (1989). Nucl. Acids Res. 12, 4847–4861.CrossRefGoogle Scholar
  11. 11.
    Van Berlo, M.F., Horzinek, M.C., Van der Zeijst, B.A.M. (1982). Virology 118, 345–352.PubMedCrossRefGoogle Scholar
  12. 12.
    Horzinek, M.C. and Weiss, M. (1984). Zbl. Vet. Med. B. 31, 649–659.CrossRefGoogle Scholar
  13. 13.
    Snijder, E.J., Ederveen, J., Spaan, W.J.M., Weiss, M. and Horzinek, M.C. (1988). J. Gen. Virol. 69, 2135–2144.PubMedCrossRefGoogle Scholar
  14. 14.
    Snijder, E.J., Horzinek, M.C. and Spaan, W.J.M. J. Virol. in press.Google Scholar
  15. 15.
    Staden, R. (1986). Nucl. Acids Res. 14, 217–233.PubMedCrossRefGoogle Scholar
  16. 16.
    Lipman, D.J. and Pearson, W.R. (1985). Science 227, 1435–1441.PubMedCrossRefGoogle Scholar
  17. 17.
    Luytjes, W., Bredenbeek, P.J., Noten, A.F.H., Horzinek, M.C., and Spaan, W.J.M. (1988). Virology 166, 415–422.PubMedCrossRefGoogle Scholar
  18. 18.
    Snijder, E.J., Den Boon, J.A., Spaan, W.J.M., Verjans, G.M.G.M. and Horzinek, M.C. J. Gen. Virol. in press.Google Scholar
  19. 19.
    De Groot, R.J., Ter Haar, R.J., Horzinek, M.C. and Van der Zeijst, B.A.M. (1987). J. Gen. Virol. 68, 995–1002.PubMedCrossRefGoogle Scholar
  20. 20.
    Pachuk, C.J., Bredenbeek, P.J., Zoltick, P.W., Spaan, W.J.M., and Weiss, S.R. (1989). Virology 71, 141–148.CrossRefGoogle Scholar
  21. 21.
    Spaan, W.J.M., Cavanagh, D., and Horzinek, M.C. (1988). J. Gen. Virol. 69, 2939–2952.PubMedCrossRefGoogle Scholar
  22. 22.
    Klug, A. and Rhodes, D. (1987). TIBS 12, 464–468.Google Scholar
  23. 23.
    Jacks, T., Madhani, D.H., Masiarz, F.R., and Varmus H.E. (1988). Cell 55, 449–458.CrossRefGoogle Scholar
  24. 24.
    Sawicki, S.G., and Sawicki, D.L. (1986). J. Virol. 57, 328–334.PubMedGoogle Scholar
  25. 25.
    Compton, S.R., Rogers, D.B., Holmes, K.V., Fertsch, D., Remenick, J., and McGowan, J.J. (1987). J. Virol. 61, 1814–1820.PubMedGoogle Scholar
  26. 26.
    Kräusslich, H.-G. and Wimmer, E. (1988). Ann. Rev. Biochem. 57, 701–754.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Peter J. Bredenbeek
    • 1
  • Eric J. Snijder
    • 1
  • Ans F. H. Noten
    • 1
  • Johan A. den Boon
    • 1
  • Wim M. M. Schaaper
    • 2
  • Marian C. Horzinek
    • 1
  • Willy J. M. Spaan
    • 1
  1. 1.Institute of Virology, Department of Infectious Diseases and ImmunologyState University of UtrechtUtrechtThe Netherlands
  2. 2.Central Veterinary InstituteLelystadThe Netherlands

Personalised recommendations