Nucleotide Sequence of the E2-Peplomer Protein Gene and Partial Nucleotide Sequence of the Upstream Polymerase Gene of Transmissible Gastroenteritis Virus (Miller Strain)

  • Ronald D. Wesley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


The E2-peplomer protein gene of the virulent Miller strain of transmissible gastroenteritis virus (TGEV) was sequenced from cDNA clones and compared to the E2 gene sequence of the avirulent Purdue strain. Sequence comparisons indicate that most amino acid differences occur in the N-terminal half of the E2-peplomer which represents the most exposed region of the protein. In addition, analysis of an incompletely sequenced open reading frame (ORF) to the immediate 5′ side of the E2 gene indicates extensive sequence homology with the infectious bronchitis virus (IBV) F2 gene which is thought to encode a RNA polymerase.


Infectious Bronchitis Virus Amino Acid Difference Mouse Hepatitis Virus Transmissible Gastroenteritis Virus Conservative Amino Acid Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Delmas, G. Gelfi, H. Laude, Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein, J. Gen. Virol. 67:1405–1418 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Jimenez, I. Correa, M. P. Melgosa, M. J. Bullido, and L. Enjuanes, Critical epitopes in transmissible gastroenteritis virus neutralization, J. Virol. 60:131–139 (1986).PubMedGoogle Scholar
  3. 3.
    R. D. Woods, R. D. Wesley, and P. A. Kapke, Neutralization of porcine transmissible gastroenteritis virus by complement-dependent monoclonal antibodies, Am. J. Vet. Res. 49:300–304 (1988).PubMedGoogle Scholar
  4. 4.
    R. D. Woods, R. D. Wesley, Unpublished result.Google Scholar
  5. 5.
    P. A. Kapke, and D. A. Brian, Sequence analysis of the porcine transmissible gastroenteritis Coronavirus nucleocapsid protein gene, Virol151:41–49 (1986).CrossRefGoogle Scholar
  6. 6.
    D. Rasschaert, J. Gelfi, and H. Lande, Enteric Coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression, Biochimie. 69:591–600 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Rasschaert, and H. Laude, The predicted primary structure of the peplomer protein E2 of the porcine Coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68:1883–1890 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    R. D. Wesley, A. K. Cheung, D. D. Michael, and R. D. Woods, Nucleotide sequence of Coronavirus TGEV genomic RNA: evidence for 3 mRNA species between the peplomer and matrix protein genes, Virus Res. 13:87–101. (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    M. E. G. Boursnell, T. D. K. Brown, I. J. Foulds, P. F. Green, F. M. Tomley, and M. M. Binns, Completion of the sequence of the genome of the Coronavirus avian infectious bronchitis virus, J. Gen. Virol. 68:57–77 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    R. D. Wesley, R. D. Woods, I. Correa, L. Enjuanes, Lack of protection in vivo with neutralizing monoclonal antibodies to transmissible gastroenteritis virus, Vet. Micro. 18:197–208 (1988).CrossRefGoogle Scholar
  11. 11.
    S. Henikoff, Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing, Gene 28:351–359 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    F. Sanger, S. Micklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 74:5463–5467 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    W. Luytjes, L. S. Sturman, P. J. Bredenbeek, J. Charite, B. A. M. Van der Feijst, M. C. Horzinek, and W. J. M. Spaan, Primary structure of the glycoprotein E2 of Coronavirus MHV-A59 and identification of the trypsin cleavage site, Virology 161:479–487 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    J. G. Kusters, H. G. M. Niesters, J. A. Lenstra, M. C. Horzinek, and B. A. M. Van Der Feijst, Phylogeny of antigenic varients of avian Coronavirus IBV, Virology 169:217–221 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    H. G. M. Niesters, J. A. Lenstra, W. J. M. Spaan, A. J. Zijderveld, N. M. C. Bleumink-Pluym, F. Hong, G. J. M. van Scharrenburg, M. C. Horzinek, and B. A. M. van der Zeijst, The peplomer protein sequence of the M41 strain of Coronavirus IBV and its comparison with Beaudett strains, Virus Res. 5:253–263 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    D. Cavanagh, P. J. Davis, and A. P. A. Mockett, Amino acids within hypervariable region 1 of avian Coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes, Virus Res11:141–150 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    J. L. Leibowitz, S. R. Weiss, E. Paavola, and C. W. Bond, Cell-free translation of murine Coronavirus RNA, J. Virol. 43:905–913 (1982).PubMedGoogle Scholar
  18. 18.
    S. Siddell, Coronavirus JHM: coding assignments of subgenomic mRNAs, J. Gen. Virol. 64:113–125 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Hu, J. Braszewski, T. Boone, and L. Souza, Cloning and expression of the surface glycoprotein gpl95 of porcine transmissible gastroenteritis virus, in: “Modern Approaches to Vaccines,” pp.219–223, Cold Spring Harbor Laboratory, New York (1984).Google Scholar
  20. 20.
    L. Jacobs, B. A. M. van der Zeijst, and M. C. Horzinek, Characterization and translation of transmissible gastroenteritis mRNAs, J. Virol. 57:1010–1015 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Ronald D. Wesley
    • 1
  1. 1.United States Department of Agriculture Agricultural Research ServiceNational Animal Disease CenterAmesUSA

Personalised recommendations