MHV Leader RNA Secondary Structure Affects Binding to the Nucleocapsid Protein

  • Lisa M. Welter
  • Stephen A. Stohlman
  • Robert J. Deans
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)


Leader RNA is found at the 5′ end of the mouse hepatitis virus (MHV) genomic RNA, at the 5′ end of the seven viral mRNAs, and free in the cell. Leader RNA is synthesized by a transcriptional activity separate from the activities that synthesize both (-) sense genomic length RNA and the virus mRNAs1. It is believed to function as a primer, binding to complementary intergenic sites, on (-) sense template, situated 5′ of each of the initiation sites for viral mRNAs2. Using monoclonal antibodies specific for the nucleocapsid (N) protein, immunoprecipitations of RNA/protein complexes from infected cells indicate that the N protein is complexed to: 1) genomic RNA; Z) viral mRNAs; and 3) even free leader containing RNA fragments as small as 60 nucleotides in length3. Northwestern blot analysis showed that the viral N protein exhibits RNA binding activity that is specific for viral leader containing RNA when expressed in the (+) sense4,5. However, this system has several limitations. First, in denaturing conditions, RNA/protein interactions which require the interaction of multiple protein subunits cannot be studied, and second, it is not possible to quantify relative affinities and binding characteristics.


Leader Sequence Viral mRNAs Mouse Hepatitis Virus Infected Cell Lysate Nonspecific Competitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Brayton, M. M. C. Lai, C. D. Patton and S. A. Stohlman, J. Virol. 42:847–853 (1982).PubMedGoogle Scholar
  2. 2.
    R. S. Baric, C. -K. Shieh, S. S. Stohlman and M. M. C. Lai, Virol. 156:342–354 (1987).CrossRefGoogle Scholar
  3. 3.
    R. S. Baric, G. W. Nelson, J. Q. Fleming, R. J. Deans, J. G. Keck, N. Casteel and S. A. Stohlman, J. Virol. 62:4280–4287 (1988).PubMedGoogle Scholar
  4. 4.
    S. A. Stohlman, R. S. Baric, G. W. Nelson, L. H. Soe, L. M. Welter and R. J. Deans, J. Virol. 62:4288–4295 (1988).PubMedGoogle Scholar
  5. 5.
    S. G. Robbins, M. F. Frana, J. J. McGowan, J. F. Boyle and K. W. Holmes, Virol. 150:402–410 (1986).CrossRefGoogle Scholar
  6. 6.
    J. Armstrong, S. Smeeken and P. Rottier, Nucl. Acids Res. 11:883-891.Google Scholar
  7. 7.
    M. M. C. Lai and S. A. Stohlman, J. Virol. 26:236–242 (1978).PubMedGoogle Scholar
  8. 8.
    E. Jacobs and A. Clad, Anal. Biochem. 154:583–589 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Bradford, Anal. Biochem. 72:248 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Schneider, I. Gander, U. Miller, R. Mertz and E. L. Wennacher, Nucl. Acids Res. 14, 1303–1317.Google Scholar
  11. 11.
    L. M. Welter, G. Nelsen, S. A. Stohlman and R. J. Deans, Submitted to Nucl. Acids Res. (1986).Google Scholar
  12. 12.
    M. Zuker and P. Stiegler, NAR 9:133–148 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    M. M. C. Lai, Baric, R. S., Brayton, P. R. and Stohlman, S. A. Proc. Natl. Acad. Sci. USA 81:3626–3630 (1984).CrossRefGoogle Scholar
  14. 14.
    G. J. Murakawa, B. C. Chen, M. D. Kuwabara, D. P. Nierlich and D. S. Sigman, Nucl. Acids Res. In Press.Google Scholar
  15. 15.
    P. E. Nielsen, C. Jeppesen and O. Buchardt, FEBS Letters 235:122–124 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Lisa M. Welter
    • 1
  • Stephen A. Stohlman
    • 1
    • 2
  • Robert J. Deans
    • 1
  1. 1.Department of MicrobiologyUniversity of Southern California School of MedicineLos AngelesUSA
  2. 2.Department of NeurologyUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations