Advertisement

Expression of TGEV Structural Genes in Virus Vectors

  • D. J. Pulford
  • P. Britton
  • K. W. Page
  • D. J. Garwes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

TGEV is a Coronavirus that causes gastroenteritis in pigs, resulting in a high mortality of neonates. The TGEV virion contains three major structural polypeptides; a surface glycoprotein (spike or peplomer protein) with a monomeric Mr 200000, a glycosylated integral membrane protein observed as a series of polypeptides of Mr 28000–31000 and a basic phosphorylated protein (the nucleoprotein) of Mr 47000 associated with the viral genomic RNA (1). The genes encoding TGEV nucleoprotein (NP), integral membrane protein (E1) and peplomer (E2) have been cloned and sequenced from an avirulent laboratory strain, Purdue (2, 3, 4, 5) and a virulent British field isolate, FS772/70 (6, 7).

Keywords

Vaccinia Virus Integral Membrane Protein Transmissible Gastroenteritis Virus Infected Cell Lysate Virus Expression Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Garwes and D. H. Pocock, The polypeptide structure of transmissible gastroenteritis virus. J. Gen. Virol., 29:25–34 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    P. A. Kapke and D. A. Brian, Sequence analysis of the porcine transmissible gastroenteritis Coronavirus nucleocapsid protein gene. Virology, 151:41–49 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    P. A. Kapke, F. Y. C. Tung, D. A. Brian, R. D. Woods and R. Wesley, Nucleotide sequence of the porcine transmissible gastroenteritis Coronavirus matrix protein, Adv. Exp. Med. Biol., 218: 117–122 (1987).PubMedGoogle Scholar
  4. 4.
    H. Laude, D. Rasschaert and J. C. Huet, Sequence and N-terminal processing of the transmembrane protein E1 of the Coronavirus transmissible gastroenteritis virus, J. Gen. Virol., 68:1687–1693 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Rasschaert and H. Laude, The predicted primary structure of the peplomer protein E2 of the porcine Coronavirus Transmissible Gastroenteritis Virus, J. Gen. Virol., 68:1883–1890 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Britton, R. S. Carmenes, K. W. Page, D. J. Garwes and F. Parra, Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae, Mol. Microbiol., 2: 89–99 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Britton, R. S. Carmenes, K. W. Page and D. J. Garwes, The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: Molecular characterisation, sequence and expression in Escherichia coli, Mol. Microbiol., 2:497–505 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Moss and C. Flexner, Vaccinia virus expression vectors, Ann. Rev. Immunol., 5:305–324 (1987).CrossRefGoogle Scholar
  9. 9.
    W. Doerfler, Expression of the Autographa californica Nuclear Polyhidrosis virus genome in insect cells: Homologous viral and heterologous vertebrate genes - the Baculovirus vector system, Current Topics in Microbiol. and Immunol., 131:51–65 (1986).CrossRefGoogle Scholar
  10. 10.
    M. Mackett, G. L. Smith and B. Moss, The construction and characterisation of vaccinia virus recombinants expressing foreign genes. in: “DNA Cloning, a Practical Approach, Vol. II”, D. M. Glover, ed., IRL Press (1985).Google Scholar
  11. 11.
    M. Brown and P. Faulkner, A plaque assay for nuclear polyhedrosis viruses using a solid overlay, J. Gen. Virol., 36:361–364 (1977).CrossRefGoogle Scholar
  12. 12.
    D. H. Pocock and D. J. Garwes, The influence of pH on the growth and tability of transmissible gastroenteritis virus in vitro, Arch. Virol., 49:239 (1985).CrossRefGoogle Scholar
  13. 13.
    D. J. Garwes, L. Bountiff, G. C. Millson and C. J. Elleman, Defective eplication of porcine transmissible gastroenteritis virus in a continuous cell line, Adv. Exp. Med. Biol., 178:79–93 (1984).Google Scholar
  14. 14.
    M. Mackett, G. L. Smith and B. Moss, General method for production and election of infectious vaccinia virus recombinants expressing foreign genes, J. Virol., 49:857–864 (1984).PubMedGoogle Scholar
  15. 15.
    G. E. Smith and M. D. Summers, Analysis of baculovirus genomes with estriction endonucleases, Virology, 89:517–527 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Matsuura, R. D. Possee, H. A. Overton and D. H. L. Bishop, Baculovirus expression vectors: The requirements for high level expression of proteins, including glycoproteins, J. Gen. Virol., 68:1233–1250 1987).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Merchlinsky and B. Moss, Resolution of vaccinia virus DNA concatamer unctions requires late-gene expression, J. Virol., 63:1595–1603 (1989).PubMedGoogle Scholar
  18. 18.
    D. J. Garwes, F. Stewart, S. F. Cartwright and I. Brown. Differentiation of porcine Coronavirus from transmissible gastroenteritis virus, Vet. Rec., 122:86–87 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Jimenez, I. Correa, M. P. Melgosa, M. J. Bullido and L. Enjuanes, Critical epitopes in transmissible gastroenteritis virus neutralisation, J. Virol., 60:131–139 (1986).PubMedGoogle Scholar
  20. 20.
    D. J. Garwes, F. Stewart and C. J. Elleman, Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus, Adv. Exp. Med. Biol., 218:509–516 (1987).PubMedGoogle Scholar
  21. 21.
    P. Britton, D. J. Garwes, K. W. Page and J. Walmsley, Expression of porcine transmissible gastroenteritis virus genes in E. coli as galactosidase chimaeric proteins, Adv. Exp. Med. Biol., 218:55–64 (1987).PubMedGoogle Scholar
  22. 22.
    M. Kozak, Comparison of initiation of protein synthesis in prokaryotes, eukaryotes and organelles, Microb. Rev., 47:1–45 (1983).Google Scholar
  23. 23.
    M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryote ribosomes, Cell, 44:283–293 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Hu, J. Bruszewski and R. Smalling, Infectious vaccinia virus recombinant that expresses the surface antigen of porcine transmissible gastroenteritis virus (TGEV), in: “Vaccinia Viruses as Vectors for Vaccine Antigens,” Quinnan, ed., Elsevier Science Publishing Co., the Netherlands (1985).Google Scholar
  25. 25.
    R. D. Woods, R. D. Wesley and P. A. Kapke, Complement-dependent neutralisation of Transmissible Gastroenteritis Virus by monoclonal antibodies, Adv. Exp. Med. Biol., 218:493–500 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. J. Pulford
    • 1
  • P. Britton
    • 1
  • K. W. Page
    • 1
  • D. J. Garwes
    • 1
  1. 1.Compton LaboratoryAFRC Institute for Animal HealthCompton, Newbury, BerkshireUK

Personalised recommendations