Advertisement

Biosynthesis and Function of the Coronavirus Spike Protein

  • H. Vennema
  • P. J. M. Rottier
  • L. Heijnen
  • G. J. Godeke
  • M. C. Horzinek
  • W. J. M. Spaan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

One of the most interesting aspects of Coronavirus replication is their intracellular assembly. Budding is localized in the ER-pre Golgi region (8, 26). Both Coronavirus glycoproteins are synthesized in the RER on membrane bound ribosomes (16). The integral membrane protein (M) accumulates in the perinuclear region and is believed to determine the site of budding. The spike protein (S) mediates binding of virions to the host cell receptor, possesses a fusogenic activity and is the major target for virus neutralizing antibodies (22). The primary nucleotide sequence and the predicted amino acid sequence of a number of spike protein genes revealed features characteristic of type I membrane proteins (22).

Keywords

Infectious Bronchitis Virus Recombinant Vaccinia Virus Mouse Hepatitis Virus Spike Protein Chase Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Cavanagh, D. 1983. Coronavirus IBV: Structural characterization of the spike protein. J. Gen. Virol. 64:2577–2583.PubMedCrossRefGoogle Scholar
  2. 2.
    Chakrabarti, S., K. Brechling, and B. Moss. 1985. Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell Biol. 5:3403–3409.PubMedGoogle Scholar
  3. 3.
    de Groot, R.J., R.W. van Leen, M.J.M Dalderup, H. Vennema, M.C. Korzinek, and W.J.M. Spaan. 1989. Stably expressed FIPV peplomer protein induces cell fusion and elecits neutralizing antibodies in mice. Virology 171:493–502PubMedCrossRefGoogle Scholar
  4. 4.
    de Groot, R.J., W. Luytjes, M.C. Horzinek, B.A.M. van der Zeijst, W.J.M. Spaan, and J.A. Lenstra. 1987. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 196:963–966.PubMedCrossRefGoogle Scholar
  5. 5.
    de Groot, R.J., J. Maduro, J.A. Lenstra, M.C. Horzinek, B.A.M. van der Zeijst, and W.J. Spaan. 1987. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 68:2639–2646.PubMedCrossRefGoogle Scholar
  6. 6.
    Doms, R.W., D.S. Keller, A. Helenius, and W.E. Balch. 1987. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatits virus G protein. J. Cell Biol. 105:1957–1969.PubMedCrossRefGoogle Scholar
  7. 7.
    Doms, R.W., A. Ruusala, C. Machammer, J. Helenius, A. Helenius, and J.K. Rose. 1988. Differential effects of mutations in three domains on folding, quarternary structure, and intracellular transport of vesicular stomatist virus G protein. J. Cell Biol. 107:89–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Dubois-Dalcq, M.E., E.W. Doller, M.V. Haspel, and K.V. Holmes. 1982. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virology 119:317–331.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunphy, W.G., and J.E. Rothman. 1985. Compartmental organization of the golgi stack. Cell 42:13–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Gething, M.-J., K. McCammon, and J. Sambrook. 1986. Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport. Cell 46:939–950.PubMedCrossRefGoogle Scholar
  11. 11.
    Einfeld, D., and E. Hunter. 1988. Oligomeric structure of a prototype retrovirus glycoprotein. Proc. Natl. Acad. Sci. 85:8688–8692.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmes, K.V., E.W. Doller, and L.S. Sturman. 1981. Tunicamycin resistant glycosylation of a Coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology 115:334–344.PubMedCrossRefGoogle Scholar
  13. 13.
    Luytjes, W., L.S. Sturman, P.J. Bredenbeek, J. Charite, B.A.M. van der Zeijst, M.C. Horzinek, and W.J. Spaan. 1987. Primary structure of the glycoprotein E2 of Coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487.PubMedCrossRefGoogle Scholar
  14. 14.
    Machamer, C.E., and J.K. Rose. 1987. A specific transmembrane domain of a Coronavirus El glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 105:1205–1214.PubMedCrossRefGoogle Scholar
  15. 15.
    Mackett, M., G.L. Smith, and B. Moss. 1984. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49:857–864.PubMedGoogle Scholar
  16. 16.
    Niemann, H., B. Boschek, D. Evans, M. Rosing, T. Tamura, and H.D. Klenk. 1982. Post-translational glycosylation of Coronavirus glycoprotein El: inhibition by monensin. EMBO. J. 1:1499–1504.PubMedGoogle Scholar
  17. 17.
    Niemann, H., and H.-D. Klenk. 1981. Coronavirus glycoprotein El, a new type of viral glycoprotein. J. Mol. Biol. 153:993–1010.PubMedCrossRefGoogle Scholar
  18. 18.
    Niesters, H.G., J.A. Lenstra, W.J. Spaan, A.J. Zijderveld, N.M. Bleumink-Pluym, F. Hong, G.J. van Scharrenburg, M.C. Horzinek, and B.A.M. van der Zeijst. 1986. The peplomer protein sequence of the M41 strain of Coronavirus IBV and its comparison with Beaudette strains. Virus. Res. 5:253–263.PubMedCrossRefGoogle Scholar
  19. 19.
    Rose, J.K., and J.E. Bergmann. 1982. Expression from cloned cDNA of cell-surface secreted forms of the glycoprotein of vesicular stomatitis virus in eucaryotic cells. Cell 30:753–762.PubMedCrossRefGoogle Scholar
  20. 20.
    Rottier, P.J., and J.K. Rose. 1987. Coronavirus El glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol. 61:2042–2045.PubMedGoogle Scholar
  21. 21.
    Rottier, P.J.M., M.C. Horzinek, and Zeijst B.A.M. van der. 1981. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 40:350–357.PubMedGoogle Scholar
  22. 22.
    Spaan, W., D. Cavanagh, and M.C. Horzinek. 1988. Coronaviruses: Structure and genome expression. J. Gen. Virol. 69:2939–2952.PubMedCrossRefGoogle Scholar
  23. 23.
    Stern, D.F., and B.M. Sefton. 1982. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 44:804–812.PubMedGoogle Scholar
  24. 24.
    Sturman, L., and K. Holmes. 1985. The novel glycoproteins of coronaviruses. TIBS 10:17–20.Google Scholar
  25. 25.
    Sturman, L.S., C.S. Ricard, and K.V. Holmes. 1985. Proteolytic cleavage of the E2 glycoprotein of murine Coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 56:904–911.PubMedGoogle Scholar
  26. 26.
    Tooze, S.A., J. Tooze, and G. Warren. 1988. Site of addition of N-acetyl-galactosamine to the El glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 106:1475–1487.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • H. Vennema
    • 1
  • P. J. M. Rottier
    • 1
  • L. Heijnen
    • 1
  • G. J. Godeke
    • 1
  • M. C. Horzinek
    • 1
  • W. J. M. Spaan
    • 1
  1. 1.Department of Virology, Faculty of Veterinary MedicineState University of UtrechtUtrechtThe Netherlands

Personalised recommendations