Advertisement

The Nucleocapsid Protein of IBV Comprises Immunodominant Determinants Recognized by T-Cells

  • Annemieke M. H. Boots
  • Johannes G. Kusters
  • Bernard A. M. van der Zeijst
  • Evert J. Hensen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Infectious bronchitis virus (IBV), the type species of the coronaviridae, is the causative agent of an acute respiratory disease in chickens. The positive stranded RNA genome of IBV encodes three major structural proteins: two N-glycosylated envelope proteins, El and E2, and a nonglycosylated nucleocapsid protein (N). The E2 protein, or spike protein, consists of two or more copies of structurally unrelated subunits (S1 and S2) with relative molecular masses of 90 and 84 kd, respectively. The El protein, or matrix protein, occurs in several forms (27 to 36 kd). The phosphorylated basic nucleoprotein (56 kd) is closely associated with the viral RNA.

Keywords

Rabies Virus Infectious Bronchitis Virus Nucleocapsid Protein Expression Product Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    B. Dietzschold, H. Wang, C. E. Rupprecht, E. Celis, M. Tollis, H. Ertl, E. Heber-Katz and H. Koprowski. 1987. Induction of protective immunity against rabies by immunisation with rabies virus ribonucleoprotein. Proc. Natl. Acad.Sci.USA 84, 9165–9169.PubMedCrossRefGoogle Scholar
  2. 2.
    S. Fazekas de St. Groth, and D. Scheidegger. 1980. Production of monoclonal antibodies stratology and tactics. J. Immunol.Meth. 35, 1.CrossRefGoogle Scholar
  3. 3.
    J. G. Kusters, H. G. M. Niesters, N. M. C. Bleumink-Pluym, F. G. Davelaar, M. C. Horzinek and B. A. M. van der Zeijst. 1987. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J.gen.Virol. 68, 343–352.PubMedCrossRefGoogle Scholar
  4. 4.
    J. R. Lamb, J. N. Woody, R. J. Hartzman and D. C. Eckels. 1982. In vitro influenza-specific antibody production in man: antigen specific and HLA-restricted induction of helper activity mediated by cloned human T-lymphocytes. J.Immunol. 129, 1465–1470.PubMedGoogle Scholar
  5. 5.
    J. A. Lenstra, J. G. Kusters, G. Koch and B. A. M. van der Zeijst. 1989. Antigenicity of the peplomer proteins of infectious bronchitis virus. Mol.Immunol. 1, 7–15.CrossRefGoogle Scholar
  6. 6.
    D. R. Milich, A. Mc-Lachlan, G. B. Thornton and J. L. Hughes. 1987. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T-cell site. Nature 329, 547–549.PubMedCrossRefGoogle Scholar
  7. 7.
    H. G. M. Niesters, J. A. Lenstra, W. J. M. Spaan, A. J. Zijderveld, N. M. Bleumink Pluym, F. Hong, G. J. M. van Scharrenburg, M. C. Horzinek and B. A. M. van der Zeijst. 1986. The peplomer protein sequence of the M41 strain of Coronavirus IBV and its comparison with Beaudette strains. Virus Res. 5, 253–263.PubMedCrossRefGoogle Scholar
  8. 8.
    S. M. Russell, and F. Y. Liew. 1979. T-cells primed by influenza virion internal components can cooperate in the antibody response to heamagglutinin. Nature 280, 147–148.PubMedCrossRefGoogle Scholar
  9. 9.
    P. A. Scherle, and W. Gerhard. 1988. Differential ability of B cells specific for external vs. internal influenza virus proteins to respond to help from influenza virus specific T-cell clones in vivo. Proc. Natl. Acad. Sci. USA 85, 4446–4450.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Silva, H. R. MacDonald, A. Conzelmann, P. Corthesy and M. Nabholz. 1983. Rat X Mouse T-cell hybrids with inducible specific cytolytic activity. Immunol .Rev. 76, 105–129.PubMedCrossRefGoogle Scholar
  11. 11.
    R. H. Smith, and B. Ziola. 1986. Cyclophosphamide and dimethyl dioctadecyl ammonium bromide immuno-potentiate the delayed type hypersensitivity response to inactivated enveloped viruses. Immunol. 58, 245–250.Google Scholar
  12. 12.
    K. K. Stanley, and J. P. Luzio. 1984. EMBO J. 3, 1429–1434.PubMedGoogle Scholar
  13. 13.
    D. F. Stern, and B. M. Sefton. 1984. Coronavirus multiplication: locations of genes for virion proteins on the avian infectious bronchitis virus genome. J. Virol. 50, 22–29.PubMedGoogle Scholar
  14. 14.
    W. van Eden, A. Noordzij, E. J. Hensen, R. van der Zee, J. D. A van Embden and R. Meloen. 1989. A modified method for the rapid identification and characterization of T-cell epitopes in protein antigens. Modern approaches to new vaccines including prevention of AIDS. Cold Spring Harbor Laboratory, Cold Spring Harbor 33–36.Google Scholar
  15. 15.
    R. W. Winterfield, and A. M. Fadly. 1972. Some characteristics of isolates of infectious bronchitis virus from commercial vaccines. Avian Dis. 16, 746–755.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Annemieke M. H. Boots
    • 1
  • Johannes G. Kusters
    • 1
  • Bernard A. M. van der Zeijst
    • 1
  • Evert J. Hensen
    • 1
  1. 1.Institute of Infectious Diseases and Immunology, Fac. of Vet. MedicineUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations