Advertisement

Linear Neutralizing Epitopes on the Peplomer Protein of Coronaviruses

  • Willem P. A. Posthumus
  • Rob H. Meloen
  • Luis Enjuanes
  • Isabel Correa
  • Anthonie P. van Nieuwstadt
  • Guus Koch
  • Raoul J. de Groot
  • Johannes G. Kusters
  • Willem Luytjes
  • Willy J. Spaan
  • Bernard A. M. van der Zeijst
  • Johannes A. Lenstra
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Three years ago, we reported a comparison of the primary structures of the S peplomer proteins of three coronaviruses - mouse hepatitis virus (MHV, strain A59), infectious bronchitis virus (IBV, strain M41), and feline infectious peritonitis virus (FIPV, strain 79-1146) - which represent the three antigenic clusters in the Coronavirus family (De Groot et al., 1987a, b). A periodicity in the C-terminal part of the S sequence indicated the presence of a coiled-coil structure, which forms the stalk of the peplomer. The nonconserved N-terminal sequence probably forms the bulbous part of the peplomer.

Keywords

Infectious Bronchitis Virus Antigenic Site Hybrid Protein Linear Epitope Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Cavanagh, D., P.J. Davis, D.J.C. Pappin, M.W. Binns, M.E.G. Boursnell, and T.D.K. Brown., 1986, Coronavirus IBV: partial amino terminal sequencing of spike protein S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strain Beaudette and M41. Virus Res. 4:133–143.PubMedCrossRefGoogle Scholar
  2. Collins, A.R., R.L. Rnobler, H. Powell, and M.J. Buchmeier., 1982, Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology119:358–371.PubMedCrossRefGoogle Scholar
  3. Correa, I., G. Jimenez, C. Sune, M.J. Bullido, and L. Enjuanes., 1988, Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis Coronavirus. Virus Res. 10:77–94.PubMedCrossRefGoogle Scholar
  4. Correa, I., M.J. Bullido, C. Sune, F. Gebauer, M.F.D. Baay, K.A. Zwaagstra, W.P.A. Posthumus, J.A. Lenstra, and L. Enjuanes., 1989, Correlation between physical and antigenic structure of transmissible gastroenteritis Coronavirus E2-glycoprotein. J. gen. Virol., in press.Google Scholar
  5. Delmas, B., J. Gelfi, and H. Laude., 1986, Antigenic structure of transmissible gastroenteritis virus. II. Domains on the peplomer glycoprotein. J. gen. Virol. 67:1405–1418.PubMedCrossRefGoogle Scholar
  6. Garwes, D.J.,F. Steward, and C.J. Elleman., 1987, Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Coronaviruses,Adv. Exp. Med. Biol. 218, p.509–515, M.M.C. Lai and S.A. Stohlman ed., Plenum Press, New York/London.Google Scholar
  7. Geysen, H.M., R.H. Meloen, and S.J. Barteling., 1984, Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natn. Acad. Sci. U.S.A. 81:3998–4002.CrossRefGoogle Scholar
  8. De Groot, R.J., W. Luytjes, M.C. Horzinek, B.A.M. van der Zeijst, W.J.M. Spaan, and J.A. Lenstra., 1987a, Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 196:963–966.PubMedCrossRefGoogle Scholar
  9. De Groot, R.J., J.A. Lenstra, W. Luytjes, H.G.M. Niesters, M.C. Horzinek, B.A.M. van der Zeijst, and W.J. Spaan., 1987b, Sequence and structure of the Coronavirus peplomer protein. In: Coronaviruses, Adv. Exp. Med. Biol. 218, p.31–38, M.M.C. Lai and S.A. Stohlman ed., Plenum Press, New York/London.Google Scholar
  10. Koch, G., L Hartog, A. Kant, D. Van Roozelaar, and G.F. De Boer., 1986, Antigenic differentiation of avian bronchitis virus variant strains employing monoclonal antibodies. Isr. J. Ved. Med. 42:89–97.Google Scholar
  11. Koch, G., L Hartog, A. Kant, and D. Van Roozelaar., 1989, Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. gen. Virolsubmitted.Google Scholar
  12. Kusters, J.G., H.G.M. Niesters, J.A. Lenstra, M.C. Horzinek, and B.A.M. van der Zeijst., 1989a, Phylogeny of antigenic variants of avian corona-virus IBV. Virology169:217–221.CrossRefGoogle Scholar
  13. Kusters, J.G., E.J. Jager, J.A. Lenstra, G. Koch, W.P.A. Posthumus, R.H. Meloen, and B.A.M. van der Zeijst., 1989b, Analysis of an immunodominant region of avian Coronavirus IBV. J. Immunol. 143.Google Scholar
  14. Kusters, J.G., E.J. Jager, and B.A.M. van der Zeijst., 1989c, Sequence evidence for in vivo recombination in avian Coronavirus IBV. Submitted.Google Scholar
  15. Lenstra, J.A., J.G. Kusters, G. Koch, and B.A.M. van der Zeijst., 1989, Antigenicity of the peplomer protein of infectious bronchitis virus. Molec. Immun. 26:7–15.PubMedCrossRefGoogle Scholar
  16. Luytjes, W., D. Geerts, W. Posthumus, R. Meloen, and W. Spaan., 1989, Amino acid sequence of a conserved neutralization epitope of murine coronaviruses. J. Virol. 63:1408–1412.PubMedGoogle Scholar
  17. Posthumus, W.P.A., J.A. Lenstra, W.M.M. Schaaper, A.P.K.M.I. van Nieuwstadt, B.A.M. van der Zeijst, and R.H. Meloen., 1989, Antigenic peptides of the E2 peplomer protein of transmissible gastroenteritis virus. Submitted.Google Scholar
  18. Rossmann, M.G., E. Arnold, J.W. Erickson, E.A. Frankenberger, J.P. Griffith, H.J. Hecht, J.E. Johnson,G. Kamer, M. Luo, A.G. Mosser, R.R. Rueckert, B. Sherry, and G. Vriend., 1985, Structure of a human common cold virus and functional relationship to other picorna-viruses.NatureLondon) 317:145–153.PubMedCrossRefGoogle Scholar
  19. Stanley, K.K. and J.P. Luzio., 1984, Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 3:1429–1434.PubMedGoogle Scholar
  20. Talbot, P.J. and M.J. Buchmeier., 1985, Antigenic variation among murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein, E2. Virus Res. 2:317–328.CrossRefGoogle Scholar
  21. Talbot, P.J., R.L. Knobler, and M.J. Buchmeier., 1984a, Western and dot immunoblotting analysis of viral antigens and antibodies: applications to murine hepatitis virus. J. Immunol. Meth. 73:177–188.CrossRefGoogle Scholar
  22. Talbot, P.J., A.A. Salmi, R.L. Knobler, and M.J. Buchmeier., 1984b, Topographic mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (strain JHM): correlation with biological activities. Virology132:250–260.PubMedCrossRefGoogle Scholar
  23. Van Nieuwstadt, A.P., J. Boonstra, and J. Cornellssen., 1989, Differentiation between transmissible gastroenteritis virus and the related porcine respiratory Coronavirus using monoclonal antibodies against transmissible gastroenterites virus. J.Virol. ,in press.Google Scholar
  24. Westhoff, E., D. Alt schuh, D. Moras, A.C. Bloomer, A. Mondragon, A.A. Klug, and H.M.V. Van Regenmortel., 1984, Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature(London) 311:123–126.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Willem P. A. Posthumus
    • 1
  • Rob H. Meloen
    • 1
  • Luis Enjuanes
    • 2
  • Isabel Correa
    • 2
  • Anthonie P. van Nieuwstadt
    • 3
  • Guus Koch
    • 3
  • Raoul J. de Groot
    • 4
  • Johannes G. Kusters
    • 4
  • Willem Luytjes
    • 4
  • Willy J. Spaan
    • 4
  • Bernard A. M. van der Zeijst
    • 4
  • Johannes A. Lenstra
    • 4
  1. 1.Central Veterinary InstituteLelystadThe Netherlands
  2. 2.Centro de Biologia Molecular (CSIC-UAM), Facultad de CienciasUniversidad AutonomaMadridSpain
  3. 3.Department of VirologyCentral Veterinary InstituteLelystadThe Netherlands
  4. 4.Department of Bacteriology, Veterinary FacultyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations