Advertisement

Enteric Coronavirus TGEV: Mapping of Four Major Antigenic Determinants in the Amino Half of Peplomer Protein E 2

  • B. Delmas
  • M. Godet
  • J. Gelfi
  • D. Rasschaert
  • H. Laude
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Transmissible gastroenteritis virus (TGEV) is an enteropathogenic Coronavirus of swine which induces an acute diarrhea syndrome especially severe in newborn animals less than two weeks of age (15). The organisation of the TGEV genome has been established as well as the sequences of the genes encoding the structural and non structural proteins, except the polymerase (7, 9, 13, 14). TGEV virions are made of three proteins, a nucleoprotein (N, 47K) and 2 envelope glycoproteins : M (29K), an integral membrane protein, and S (220K), which forms the surface projections. The peplomer protein S is a 1431 amino acid long, highly glycosylated polypeptide, with a membrane anchoring domain near its carboxy terminus (14). This protein is responsible for the induction of neutralising antibodies (4, 8) and is presumably involved in the recognition of target cells. A minimum of four major antigenic sites have been delineated using monoclonal antibodies (1, 3, 6).

Keywords

Antigenic Site Escape Mutant Feline Infectious Peritonitis Transmissible Gastroenteritis Virus Feline Infectious Peritonitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Correa, G. Jimenez, C. Sune, M.J. Bullido & L. Enjuanes (1988). Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis Coronavirus. Virus Res. 10 : 77–94 .PubMedCrossRefGoogle Scholar
  2. 2.
    R.J. De Groot, J. Maduro, J.A. Lenstra, M.C. Horzinek, B.A.M. Van der Zeijst & W.J.M. Spaan (1987). cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 68 : 26392646.PubMedCrossRefGoogle Scholar
  3. 3.
    B. Delmas, J. Gelfi & H. Laude (1986). Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 67 : 14051418 .PubMedCrossRefGoogle Scholar
  4. 4.
    D.J. Garwes, M.H. Lucas, D.A. Higgins, B.V. Pike & S.F. Cartwright (1978 -1979). Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 3 : 179190 .CrossRefGoogle Scholar
  5. 5.
    M.C. Horzinek, H. Lutz & N.C. Pedersen (1982). Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect. Immun. 37 : 11481155 .PubMedGoogle Scholar
  6. 6.
    G. Jimenez, I. Correa, M.P. Melgosa, M.J. Bullido & L. Enjuanes (1986). Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 60 : 131139 .PubMedGoogle Scholar
  7. 7.
    P.A. Kapke & D.A. Brian (1986). Sequence analysis of the porcine transmissible gastroenteritis Coronavirus nucleocapsid protein gene. Virology 151 : 4149 .PubMedCrossRefGoogle Scholar
  8. 8.
    H. Laude, J.M. Chapsal, J. Gelfi, S. Labiau & J. Grosclaude (1986). Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J Gen. Virol. 67 : 119–130 .PubMedCrossRefGoogle Scholar
  9. 9.
    H. Laude, D. Rasschaert & J.C. Huet (1987). Sequence and N-terminal processing of the transmembrane protein El of the Coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 68 : 1687–1693.PubMedCrossRefGoogle Scholar
  10. 10.
    H. Laude, J. Gelfi, D. Rasschaert & B. Delmas (1988). Caractrisation antignique du Coronavirus respiratoire porcin laide danticorps monoclonaux dirigs contre le virus de la gastro-entrite transmissible. Journes Rech. Porcine en France 20 : 8994.Google Scholar
  11. 11.
    H.M. Lim & J.J. Pène (1988). Optimal conditions for supercoil DNA sequencing with Escherichia coli DNA polymerase I large fragment. Gene.Anal. Techn. 5 : 3239.CrossRefGoogle Scholar
  12. 12.
    M. Pensaert, P. Callebaut & J. Vergote (1986). Isolation of a porcine respiratory, non-enteric Coronavirus related to transmissible gastroenteritis. Vet. Quart. 8 (3) : 257261.CrossRefGoogle Scholar
  13. 13.
    D. Rasschaert, J. Gelfi & H. Laude (1987). Enteric Coronavirus TGEV : partial sequence of the genomic RNA, its organization and expression. Biochimie 69 : 591600 .PubMedCrossRefGoogle Scholar
  14. 14.
    D. Rasschaert & H. Laude (1987). The predicted primary structure of the peplomer protein E2 of the porcine Coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 68, 18831890 .PubMedCrossRefGoogle Scholar
  15. 15.
    L.J. Saif & E.H. Bohl (1986). Transmissible gastroenteritis. In : Diseases of swine (sixth edition), pp. 255274. Edited by A.D. Leman, B. Straw, R.D. Glock, W.L. Mengeling, R.H.C. Penny & E. Scholl. Iowa State University Press .Google Scholar
  16. 16.
    K.K. Stanley & J.P. Luzio (1984). Constructions of a new family of high efficiency bacterial expression vectors : identification of cDNA clones coding for human liver proteins. EMBO J. 3 : 14291434.PubMedGoogle Scholar
  17. 17.
    D.C. Wiley, I.A. Wilson & J.J. Skehel (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289 : 373–378 .PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • B. Delmas
    • 1
  • M. Godet
    • 1
  • J. Gelfi
    • 1
  • D. Rasschaert
    • 1
  • H. Laude
    • 1
  1. 1.Laboratoire de Virologie et d’Immunologie Moléculaires Centre de Recherches de Jouy-en-JosasI.N.R.A.France

Personalised recommendations