Advertisement

Expression of the Porcine Transmissible Gastroenteritis Coronavirus M Protein

  • Brenda G. Hogue
  • Debi P. Nayak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 276)

Abstract

Cloned cDNA encoding the M protein of the porcine transmissible gastroenteritis Coronavirus (TGEV) was introduced into a vaccinia virus to examine the function of the amino-terminal signal peptide. The M protein expressed by the recombinant virus was targeted to the Golgi region of infected cells, as is the M protein in cells infected with TGEV. The protein appeared not to undergo processing other than glycosylation. However, the vaccinia-expressed M protein was slightly larger than the protein found in TGEV-infected cells, suggesting that a difference in modification exists between the proteins.

Keywords

Recombinant Virus Infectious Bronchitis Virus Recombinant Vaccinia Virus cDNA Copy Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kapke, P. A., Tung, F. Y. T., Hogue, B. G., Brian, D. A., Woods, R. D., and Wesley, R., The amino-terminal signal peptide on the porcine transmissible gastroenteritis Coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation, Virology 165:367–376 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    Laude, H., Rasschaert, D., and Huet, J.-C., Sequence and N-terminal processing of the transmembrane protein El of the Coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68:1687–1693 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    Rottier, P. J. M., Brandenburg, D., Armstrong, J., and van der Zeijst, B. A. M., Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the El glycoprotein of Coronavirus mouse hepatitis virus A59, Proc. Natl. Acad. Sci. USA 81:1421–1425 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S., Brechling, K., and Moss, B., Vaccinia virus expression vector; coexpression of B-galactosidase provides visual screening of recombinant virus plaques, Mol. Cell. Biol. 5:3403–3409 (1985).PubMedGoogle Scholar
  5. 5.
    Kapke, P. A., and Brian, D. A., Sequence analysis of the procine transmissible gastroenteritis Coronavirus nucleocapsid protein gene, Virology 151:41–49 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    Woods, R. D., Wesley, R. D., and Kapke, P. A., Neutralization of transmissible gastroenteritis virus by complement-dependent monoclonal antibodies, Amer. J. Vet. Res. 49:300–304 (1987).Google Scholar
  7. 7.
    Hogue, B. G., Kienzle, T. E., Brian, Synthesis and processing of the bovine Coronavirus hemagglutinin protein, J. Gen. Virol. 70:345–352 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    Brian, D. A., Hogue, B. G., Lapps, W., Potts, B. J., and Kapke, P. A., Comparative structure of coronaviruses,Proceedings from the Fourth International Symposium of Neonatal Diarrhea,S. D. Acres, ed., University of Saskatoon, Saskatoon, Saskatchewan, Canada (1983).Google Scholar
  9. 9.
    Garwes, D. J., and Pocock, D. H., The polypeptide structure of transmissible gastroenteritis virus, J. Gen. Virol. 29:25–34.Google Scholar
  10. 10.
    Wesley, R. D., and Woods, R. D., Identification of a 17,000 molecular weight antigenic peptide in transmissible gastroenteritis virus, J. Gen. Virol. 67:1419–1425 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs, L., van der Zeijst, B. A. M., and Horzinek, M. C., Characterization and translation of transmissible gastroenteritis virus mRNAs, J. Virol. 57:1010–1015 (1986).PubMedGoogle Scholar
  12. 12.
    Dunphy, W. G., and Rothman, J. E., Compartmental organization of the Golgi stack, Cell 42:13–21 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B., Eukaryotic transient-expression system based on recombinant vaccinia virus that systhesizes bacteriophage T7 RNA polymerase, Proc. Natl. Acad. Sci. USA, 83:8122–8126 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    Rottier, P. J. M. and Rose, J. K., Coronavirus El glycoprotein expressed from cloned cDNA localizes in the Golgi region, J. Virol. 61:2042–2045 (1987).PubMedGoogle Scholar
  15. 15.
    Machamer, C. E., and Rose, J. K., A specific transmembrane domain of a Coronavirus El glycoprotein is required for its retention in the Golgi region, J. Cell Biol. 105:1205–1214 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    Holmes, K. V., Doller, E. W., and Sturman, L. S., Tunicamycin resistant glycosylation of Coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotien, Virology 115:334–344 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    Tooze, J., Tooze, S. A., and Warren, G., Laminated cisternae of the rough endoplasmic reticulum induced by Coronavirus MHV-A59, Eur. J. Cell Biol. 36:108–115 (1985).PubMedGoogle Scholar
  18. 18.
    Welch, S.K. W., and Saif, L., Monoclonal antibodies to a virulent strain of TGEV, Arch. Virol. 101:221–235 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Brenda G. Hogue
    • 1
  • Debi P. Nayak
    • 1
  1. 1.Department of Microbiology and ImmunologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations