Computational Methods in Electronic Structure Calculations of Complex Solids

  • W. M. Temmerman
  • Z. Szotek
  • H. Winter
  • G. Y. Guo


In these two lectures I hope to give you a flavour of some of the computational methods used in electronic structure calculations of complex solids. The methods are concerned with the fully quantum mechanical solution of systems with complicated interactions which give rise to the structural, chemical, magnetic and superconducting properties of solids.


Brillouin Zone Structure Constant Energy Eigenvalue Electronic Structure Calculation Principal Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar, M.J., Catlow, C.R.A., Clark, S.M. and Temmerman, W.M., 1988, The pressure dependence of the crystal structure of La2CuO4, J. Phys. C: Solid State Phys., 21: 917.CrossRefGoogle Scholar
  2. Andersen, O.K., 1975, Linear methods in band theory, Phys. Rev., B 12: 3060.CrossRefGoogle Scholar
  3. Andersen, O.K., 1984, Linear methods in band theory, in: “The Electronic Structure of Complex Systems”, P. Phariseau and W.M. Temmerman eds., NATO ASI Series Physics, B113, Plenum Press.Google Scholar
  4. Andersen, O.K., Jepson, O. and Glotzel, D., 1985, Canonical description of the band structure of metals, in: “Highlights of Condensed Matter Theory”, F. Bassani, F. Fumi and M.P. Tosi eds., North-Holland.Google Scholar
  5. Anderson, D.G., 1965, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach., 12: 547.Google Scholar
  6. Chelikowsky, J.R. and Louie, S.G., 1984, First principles linear combination of atomic orbitals method for the cohesive and structural properties of solids. Application to diamond, Phys. Rev., B29: 3470.Google Scholar
  7. Cohen, R.E., Pickett, W.E. and Krakauer, H., 1989, Phys. Rev. Lett., 62: 831.PubMedCrossRefGoogle Scholar
  8. Guo, G.Y., Temmerman, W.M. and Stocks, G.M. 1988, On the metal-semiconductor transition and antiferromagnetism in La2CuO4, J. Phys. C: Solid State Phys., 21: 103.CrossRefGoogle Scholar
  9. Guo, G.Y. and Temmerman, W.M., 1988, Electronic structure and magnetism in La2NiO4, J. Phys. C: Solid State Physics., 21: 803.CrossRefGoogle Scholar
  10. Guo, G.Y. and Temmerman, W.M., 1989, Electronic and magnetic properties of La2NiO4: the importance of La-O planes, Phys. Rev., B40: 285.CrossRefGoogle Scholar
  11. Hohenberg, P. and Kohn, W., 1964, Inhomogeneous electron gas, Phys. Rev., 136: 864.CrossRefGoogle Scholar
  12. Jepson, O. and Andersen, O.K., 1971, The electronic structure of HCP ytterbium, Solid State Commun., 9: 1763.CrossRefGoogle Scholar
  13. Jepson, O. and Andersen, O.K., 1984, No error in the tetyrahedron integration scheme, Phys. Rev., B29: 5965.Google Scholar
  14. Jones, R.O. and Gunnarsson, 1989, The density functional formalism, its application and prospects, Rev. Mod. Phys., 61: 689.CrossRefGoogle Scholar
  15. Kohn, W. and Sham, L.J., 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140: 1133.CrossRefGoogle Scholar
  16. Lehmann, G. and Taut, M., 1972, On the numerical calculation of the density of states and related properties, Phys. Rev., B54: 469.Google Scholar
  17. Pickett, W., 1989, Pseudopotential methods in condensed matter applications, Computer Physics Reports, 9: 15CrossRefGoogle Scholar
  18. Skriver, H., 1984, “The LMTO Method”, Springer-Verlag.Google Scholar
  19. Srivastava, G.P., 1984, Broyden’s method for self-consistent field convergence acceleration, J. Phys. A, 17: 317.CrossRefGoogle Scholar
  20. Stenzel, E. and Winter, H., 1985, A real-space method for the evaluation of the dynamic spin susceptibility of paramagnetic metals with application to paladium, J. Phys. F: Met. Phys., 15: 1571.CrossRefGoogle Scholar
  21. Stenzel, E. and Winter,H., 1986, The wave vector dependent dynamic spin susceptibilities of Pd and V and their contributions to the low temperature specific heat, J. Phys. F: Met. Phys., 16: 1789.CrossRefGoogle Scholar
  22. Stenzel, E., Winter, H., Szotek, Z. and Temmerman, W.M., 1988, On the theory of spin fluctuations in paramagnetic transition metals, Z. Phys. B, 70: 173.CrossRefGoogle Scholar
  23. Stocks, G.M., Temmerman, W.M. and Gyorffy, B.L., 1979, in: “Electrons in Disordered Metals and at Metallic Surfaces”, P. Phariseau, B.L. Gyorffy and L. Scheire eds., NATO ASI Series Physics, B42, Plenum Press.Google Scholar
  24. Temmerman, W.M. and Szotek, Z., 1987, Calculating the electronic structure of random alloys with the KKR-CPA method, Computer Physics Reports, 5: 174.CrossRefGoogle Scholar
  25. Temmerman, W.M., Szotek, Z. and Guo, G.Y., 1988, A local spin density study of antiferromagnetism in La2CuQO and YBa2Cu306, J. Phys. C: Solid State Phys., 21: 867.CrossRefGoogle Scholar
  26. Temmerman, W.M., Sterne, P.A., Guo, G.Y. and Szotek, Z., 1989, Electronic structure calcualtions of high Tc materials, Molecular Simulation, 4: 153.CrossRefGoogle Scholar
  27. Winter, H., Stenzel E., Szotek, Z. and Temmerman, W.M., 1988, On the evaluation of spin susceptibilities within multiple scattering theory, J. Phys. F: Met. Phys., 18: 485.CrossRefGoogle Scholar
  28. Winter, H., Szotek, Z. and Temmerman, W.M., 1989, A study on the dynamical spin susceptibility of paramagnetic La2CuO4, submitted to Z. Phys. BGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. M. Temmerman
    • 1
  • Z. Szotek
    • 1
  • H. Winter
    • 1
    • 2
  • G. Y. Guo
    • 1
  1. 1.SERC Daresbury LaboratoryDaresbury, WarringtonUK
  2. 2.Kernforschungszentrum KarlsruheINFPKarlsruheGermany

Personalised recommendations