Molecular Dynamics of Protein Molecules

  • D. S. Moss
  • T. P. Flores


The dynamics of protein molecules are fundamental to the behaviour of all biological systems. Almost all chemical reactions in living organisms are catalysed by proteins called enzymes and the catalytic processes are dependent on the conformations and mobility of the enzyme molecules. The transport of ions and small molecules by proteins (eg. oxygen by haemoglobin) also depends on the conformational rearrangements possible in the protein molecule.


Nuclear Magnetic Resonance Protein Molecule Potential Energy Function Free Energy Difference Nonbonded Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aqvist, J., van Gunsteren, W. F., Leijonmarck, M. and Tapia, C (1985). J. Mol. Biol. 183, 461–477Google Scholar
  2. Arseniev, S. A., Kondakov, V. I., Maiorov, V. N. and Brystrov, V. F. (1984), FEBS lett. 165, 57–62CrossRefGoogle Scholar
  3. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. and Hack, J. R. (1984). J. Chem. Phys. 81, 3684–3690CrossRefGoogle Scholar
  4. Beveridge, D. L. and DiCapua, F. M. (1989) Computer simulation of biomolecular systems. Theoretical and experimental applications (van Gunsteren, W. F. and Weiner, P. K., ed.), pp.1–27, Escom Leiden.Google Scholar
  5. Braun, W., Wider, G., Lee, K. M. and Wuthrich, K. (1983). J. Mol. Biol. 169, 921–948PubMedCrossRefGoogle Scholar
  6. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983). J. Comp. Chem. 4, 187–217CrossRefGoogle Scholar
  7. Brii.nger, A. T., Brooks III, C. L. and Karplus, M. (1985). Proc. Nat. Acad. Sci. USA 82, 8458–8462Google Scholar
  8. Briinger, A. T. (1988). J. Mol. Biol. 203, 803–816CrossRefGoogle Scholar
  9. Burt, S. K., Mackay, D. and Hagler, A. T. (1989). Computer-Aided Drug Design. Methods and applications (Penn, T. J. ed.), pp.55–91, DekkerGoogle Scholar
  10. Clore, G. M., Gronenborn, A. M., Brünger, A. T. and Karplus, M. (1985). J. Mol. Biol. 186, 435–455PubMedCrossRefGoogle Scholar
  11. Fincharn, D. and Heyes, D. M. (1985). Adv. Chem. Phys. 63, 493–575CrossRefGoogle Scholar
  12. Fujinaga, M., Gros, P., and van Gunsteren, W. F. (1989). J. Appl. Cryst. 22, 1–8CrossRefGoogle Scholar
  13. Gunsteren, W. F. (1989). Computer simulation of biomolecular systems. Theoretical and experimental applications (van Gunsteren, W. F. and Weiner, P. K., ed.), pp.27–59, Escom Leiden.Google Scholar
  14. Gunsteren W. F. and Berendsen, H. J. C. (1977). Mol. Phys. 34, 1311–1327CrossRefGoogle Scholar
  15. Gunsteren, W. F. and Berendsen, H. J. C. (1987). Groningen Molecular Simulation (GROMOS) Library Manual pp 1–229 BIOMOS, Nijenborgh 16, Groningen, The Netherlands.Google Scholar
  16. Gunsteren, W. F., Berendsen, H. J. C., Hermans, J., Hol, W. G. J. and Postma, J. P. M. (1983). Proc. Natl. Acad. Sci. 80, 4315–4319PubMedCrossRefGoogle Scholar
  17. Hagler, A. T., Maple, J. R., Thacher, T. S., Fitzgerald, G. B. and Dinur, U. (1989). Computer simulation of biomolecular systems. Theoretical and experimental applications (van Gunsteren, W. F. and Weiner, P. K., ed.), pp.149–167, Escom Leiden.Google Scholar
  18. Haneef, I. (1986). PhD Thesis, London Google Scholar
  19. Hansen, J. P. (1973). Phys. Rev. 8, 3096–3109CrossRefGoogle Scholar
  20. Havel, T. F. and Wuthrich, K. (1985). J. Mol. Biol. 182, 281–294PubMedCrossRefGoogle Scholar
  21. Karplus, M. and MCammon, J. A. (1986) Sci.Amer. 254, 42–51PubMedCrossRefGoogle Scholar
  22. Kramer, H. L. and Herschbach, D. R. (1970). J. Chem. Phys. 53, 2792CrossRefGoogle Scholar
  23. Kuki, A. and Wolynes, P. G. (1987). Science 236, 1647–1652PubMedCrossRefGoogle Scholar
  24. Lifson, S. (1981). NATO Advanced Study Institute/FEBS Advanced Course No.78. Current Methods in Structural Molecular Biology,pp.1–27Google Scholar
  25. Lennard-Jones, J. E. (1924). Proc. Roy. Soc. London A 106, 463CrossRefGoogle Scholar
  26. Levitt, M. (1983). J. Mol. Biol. 168, 595–620PubMedCrossRefGoogle Scholar
  27. London, F. (1930). Z. Physik. Chem. B 11, 222Google Scholar
  28. Maple, J. R., Dinur, U. and Hagler, A. T. (1988). Proc. Nat. Acad. Sci. USA 85, 5350–5354PubMedCrossRefGoogle Scholar
  29. McCammon, J. A. (1984) Rep. Prog. Phys. 47, 1–46CrossRefGoogle Scholar
  30. Morse, P. M. (1929). Phys. Rev. 34, 57CrossRefGoogle Scholar
  31. Mulliken, R. S. (1955). J. Chem. Phys. 23, 1833CrossRefGoogle Scholar
  32. Palca, J. (1986). Nature 322, p586Google Scholar
  33. Pitzer, K. S. (1951). Disc Faraday Soc. 10, 66CrossRefGoogle Scholar
  34. van der Ploeg, P. (1982). PhD Thesis, Groningen Google Scholar
  35. Rees, D. C. (1980). J. Mol. Biol. 141, 323–326PubMedCrossRefGoogle Scholar
  36. Singh, U. C., Brown, F. K., Bash, P. A. and Kollman, P. A. (1987). J. Am. Chem. Soc. 109, 1607–1614CrossRefGoogle Scholar
  37. Verlet, L. (1967). Phys. Rev. 159, 98–103CrossRefGoogle Scholar
  38. Warshel, A., Sussman, F. and Hwang, J-K. (1988). J. Mol. Biol. 201, 139–159PubMedCrossRefGoogle Scholar
  39. Williamson, M. P., Havel, T. F. and Wuthrich, K. (1985). J. Mol. Biol. 182, 295–315PubMedCrossRefGoogle Scholar
  40. Woodcock, L. V. (1971). Chem. Phys. Lett. 10, 257CrossRefGoogle Scholar
  41. Zheng, C., Wong, C. F., M`Canmon, J. A. and Wolynes, P. G. (1988), Nature 334, 726–728Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. S. Moss
    • 1
  • T. P. Flores
    • 1
  1. 1.Birkbeck CollegeLondonUK

Personalised recommendations