Electron Correlation in Small Molecules and the Configuration Interaction Method

  • Peter J. Knowles


These lectures are concerned with the quantum chemistry of small molecules, and the techniques which are applicable for the calculation of molecular properties. Throughout, the emphasis will be on attaining the highest possible accuracy for rather small systems, typically with up to about six atoms or around 10 to 20 valence electrons.


Coupling Coefficient Configuration Interaction Self Consistent Field Slater Determinant Electron Correlation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlrichs, R., 1983, Pair Correlation Theories, in: “Methods in Computational Molecular Physics,” G. H. F. Diercksen and S. Wilson, ed., Reidel, Dordrecht.Google Scholar
  2. Bauschlicher, C. W., Langhoff, S. R., and Taylor, P. R., 1989, Adv. Chem. Phys.,in press. Davidson, E. R., 1975, J. Comput. Phys.,17:87.Google Scholar
  3. Davidson, E. R., 1983, Matrix Eigenvector Methods, in: “Methods in Computational Molecular Physics,” G. H. F. Diercksen and S. Wilson, ed., Reidel, Dordrecht.Google Scholar
  4. Fletcher, R., 1980, “Practical Methods of Optimization, volume 1,” Wiley, Chichester.Google Scholar
  5. Foster, J. M., and Boys, S. F., 1960, Rev. Mod. Phys. 32: 305.CrossRefGoogle Scholar
  6. Handy, N. C., 1980, Chem. Phys. Letters, 74: 280.CrossRefGoogle Scholar
  7. Harrison, R. J., and Zarrabian, S., 1989, Chem. Phys. Letters, in press.Google Scholar
  8. Jeffreys, H. and Jeffreys, B., 1956, “Methods of Mathematical Physics,” Cambridge University Press, Cambridge.Google Scholar
  9. Jørgensen, P., and Simons, J., 1981, “Second Quantization-Based Methods in Quantum Chemistry,” Academic Press, New York.Google Scholar
  10. Knowles, P. J. and Handy, N. C., 1984, Chem. Phys. Letters, 111: 315.CrossRefGoogle Scholar
  11. Knowles, P. J. and Handy, N. C., 1989, Comp. Phys. Commun., 54: 75.CrossRefGoogle Scholar
  12. Knowles, P. J. and Handy, N. C., 1989, J. Chem. Phys., 91: 2396.Google Scholar
  13. Knowles, P. J., and Werner, H.-J., 1985, Chem. Phys. Letters, 115: 259.CrossRefGoogle Scholar
  14. Knowles, P. J., and Werner, H.-J., 1988, Chem. Phys. Letters, 145: 514.CrossRefGoogle Scholar
  15. Knowles, P. J., 1989, Chem. Phys. Letters, 155: 513.CrossRefGoogle Scholar
  16. Knowles, P. J., 1989, J. Chem. Phys., in preparation.Google Scholar
  17. Kotani, M., Amemiya, A., Ishiguro, E., and Kimura, T., 1963, “Tables of molecular integrals,” Maruzen, Tokyo.Google Scholar
  18. Lanczos, C., 1950, J. Res. Natl. Bur. Stand., 45: 255.Google Scholar
  19. Lischka, H., Shepard, R., Brown, F. B., and Shavitt, I., 1981, Int. J. Quantum Chem. Symp., 15: 91.Google Scholar
  20. Liu, B., 1978, in: “Numerical Algorithms in Chemistry: Algebraic Methods,” C. Moler and I. Shavitt, ed., LBL-8158 Lawrence Berkeley Laboratory.Google Scholar
  21. MacDonald, J. K. L., 1933, Phys. Rev., 43: 830.CrossRefGoogle Scholar
  22. McWeeny, R., and Sutcliffe, B. T., 1969, “Methods of Molecular Quantum Mechanics,” Academic Press, London.Google Scholar
  23. Meyer, W., 1976, J. Chem. Phys., 64: 2901.Google Scholar
  24. Meyer, W., 1977, in: “Modern Theoretical Chemistry,” vol. 3, H.F. Schaefer, ed., Plenum, New York.Google Scholar
  25. Olsen, J., Roos, B. O., Jorgensen, P., and Jensen, H. J. Aa., 1988, J. Chem. Phys., 89: 2185.Google Scholar
  26. Pack, R. T. and Byers Brown, W., 1966, J. Chem. Phys., 45: 556.CrossRefGoogle Scholar
  27. Paldus, J., 1974, J. Chem. Phys., 61: 5321.CrossRefGoogle Scholar
  28. Roos, B., Taylor, P., and Siegbahn, P. E. M., 1980, Chem. Phys., 48: 157.CrossRefGoogle Scholar
  29. Roos, B. 0., 1972, Chem. Phys. Letters, 15: 153.CrossRefGoogle Scholar
  30. Roothaan, C. C. J., 1951, Rev. Mod. Phys., 23: 69.CrossRefGoogle Scholar
  31. Ruedenberg, K., Cheung, L. M., and Elbert, S. T., 1979, Intern. J. Quantum Chem., 16: 1069Google Scholar
  32. Saunders, V. R., and van Lenthe, J. H., 1983, Mol. Phys., 48: 923.CrossRefGoogle Scholar
  33. Saxe, P., Schaefer, H. F., and Handy, N. C., 1981, Chem. Phys. Letters, 79: 202.CrossRefGoogle Scholar
  34. Seeger, R., Krishnan, R., and Pople, J. A., 1978, J. Chem. Phys., 68: 2519.Google Scholar
  35. Shavitt, I., 1978, Int. J. Quantum Chem. Symp., 12: 5.Google Scholar
  36. Shepard, R., 1989, J. Comp. Chem., in press.Google Scholar
  37. Siegbahn, P. E. M., 1984, Chem. Phys. Letters, 109: 417.CrossRefGoogle Scholar
  38. Siegbahn, P. E. M., 1980, J. Chem. Phys., 72: 1647.CrossRefGoogle Scholar
  39. Werner, H.-J., and Knowles, P. J., 1985, J. Chem. Phys., 82: 5053.CrossRefGoogle Scholar
  40. Werner, H.-J., and Knowles, P. J., 1988, J. Chem. Phys., 89: 5803.CrossRefGoogle Scholar
  41. Werner, H.-J., and Meyer, W., 1980, J. Chem. Phys., 73: 2342.CrossRefGoogle Scholar
  42. Werner, H.-J., and Reinsch, E.-A., 1982, J. Chem. Phys., 76: 3144.CrossRefGoogle Scholar
  43. Wilkinson, J. H., 1965, “The Algebraic Eigenvalue Problem”, Oxford University Press, New York.Google Scholar
  44. Yoshimine, M., 1973, J. Comp. Phys., 11: 449.CrossRefGoogle Scholar
  45. Zarrabian, S., Sarma, C. R., and Paldus, J., 1989, Chem. Phys. Letters, 155: 183.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Peter J. Knowles
    • 1
  1. 1.School of Chemistry and Molecular SciencesUniversity of SussexBrightonUK

Personalised recommendations