Vector Processing and Parallel Processing in Many—Body Perturbation Theory Calculations of Electron Correlation Effects in Atoms and Molecules

  • D. J. Baker
  • S. Wilson
  • D. Moncrieff


The accurate treatment of electron correlation effects is central to atomic and molecular physics and to modern quantum chemistry. Over recent years, the trend in the development of techniques for handling the effects of electron correlation in atoms and molecules has been towards an increasing significance of perturbation theory both in practical applications and in the analysis and comparision of methods used in contemporary studies of many—electron systems. The rising popularity of many—body perturbation theory for quantum chemical calculations which go beyond the Hartree—Fock model is attributable to both the theoretical and the computational properties of the method. It is the close connection between these two properties that we wish to emphasize here.


Pair Energy Vector Processing Electron Correlation Effect Rutherford Appleton Laboratory Float Point Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker D.J., Moncrieff, D., Saunders, V.R., and Wilson, S., 1989, Comput. Phys. Commun (to be submitted) Google Scholar
  2. Bartlett, R.J., Kucharski, S.A., Noga, J., Watts, J.D., and Trucks, G.W., 1989, Many—Body Methods in Quantum Chemistry, Lecture Notes in Chemistry 52 125, ed. U. Kaldor, ( Springer, Berlin )Google Scholar
  3. Brueckner, K.A., 1955, Phys. Rev. 100 36.CrossRefGoogle Scholar
  4. Càrsky, P., and Urban, M., 1980, Ab initio Calculations. Methods and Applications in Chemistry ( Springer, Berlin )Google Scholar
  5. Goldstone, J., 1957, Proc. Roy. Soc. (London) A 239 267Google Scholar
  6. Guest, M.F., and Wilson, S., 1980, Chem. Phys. Lett. 72, 49.CrossRefGoogle Scholar
  7. Guest, M.F., and Wilson, S., 1981, in: Supercomputers in Chemistry, ed. P. Lykos and I. Shavitt ( American Chemical Society, Washington D.C. ) p. 1.CrossRefGoogle Scholar
  8. Handy, N.C., Knowles, P.J., and Somasundram, K., 1985, Theoret. chim. Acta 68, 87;CrossRefGoogle Scholar
  9. Knowles, P.J., Somasundram, K., Handy, N.C., and Hirao, K., 1985, Chem. Phys. Lett. 113, 8.CrossRefGoogle Scholar
  10. Jankowski, K., 1987, Meth. Comput. Chem. 1, 1Google Scholar
  11. Laidig, W., Fitzgerald, G., and Bartlett, R.J., 1985, Chem. Phys. Lett. 113, 151CrossRefGoogle Scholar
  12. Lindgren, I., and Morrison, J., 1982, Atomic Many—Body Theory (Springer, Berlin) March, N.H., Young, W.H., and Sampanthar, S., 1967, The many body problem in quantum mechanics, Cambridge University Press.Google Scholar
  13. Moller, Chr., and Plesset, M.S., 1934, Phys. Rev. 46, 618CrossRefGoogle Scholar
  14. Moncrieff, D., Baker D.J., and Wilson, S., 1989, Comput. Phys. Commun. 55, 31CrossRefGoogle Scholar
  15. Pendergast, P., and Fink, W.H., 1974, J. Comput. Phys. 14, 286.CrossRefGoogle Scholar
  16. Pople, J.A., Krishnan, R., Schlegel, H.B., and Binkley, J.S., 1978, Intern. J. Quantum Chem. 14, 545.CrossRefGoogle Scholar
  17. Quiney, H.M., Grant, I.P., and Wilson, S., 1987, Physcia Scripta 36, 460.CrossRefGoogle Scholar
  18. Quiney, H.M., Grant, I.P., and Wilson, S. 1989, in: Many—Body Methods inGoogle Scholar
  19. Quantum Chemistry, Lecture Notes in Chemistry 52, 307, ed. U. Kaldor, (Springer, Berlin)Google Scholar
  20. Quiney, H.M., Grant, I.P., and Wilson, S., J. Phys. B: At. Mol. Opt. Phys. (submitted for publication) Google Scholar
  21. Silver, D.M., 1978a, Comput. Phys. Commun 14, 71.CrossRefGoogle Scholar
  22. Silver, D.M., 1978b, Comput. Phys. Commun 14, 81CrossRefGoogle Scholar
  23. Silver, D.M. Wilosn, S., and Bunge, C.F., 1979, Phys. Rev. A19, 1375.CrossRefGoogle Scholar
  24. Urban, M., CernuAik, I., Kellö, V., and Noga, J., 1987, Meth. Comput. Chem 1, 117Google Scholar
  25. Wells, B.H., and Wilson, S., 1986, J. Phys. B: At. Mol. Phys. 19, 2411CrossRefGoogle Scholar
  26. Wilson, S., 1977, Intern. J. Quantum Chem. 12, 609.CrossRefGoogle Scholar
  27. Wilson, S., 1978a, Correlated Wavefunctions, Proceeding of a Study Weekend, December 1977, edited by V. R. Saunders, Daresbury Laboratory.Google Scholar
  28. Wilson, S., 1978b, Comput. Phys. Commun 14, 91.CrossRefGoogle Scholar
  29. Wilson, S., 1978c, Molec. Phys. 35, 1CrossRefGoogle Scholar
  30. Wilson, S., 1979, J. Phys. B: At. Mol. Phys. 12 L657; 1979 13 1505.Google Scholar
  31. Wilson, S., 1981, in: Proceedings of Fifth Seminar on Computational Problems in Quantum Chemistry, Groningen, eds. P.Th. van Duijknen and W.C. Nieuwpoort.Google Scholar
  32. Wilson, S., 1983, in: Methods in Computational Molecular Physics, eds. G.H.F. Diercksen and S. Wilson, ( Reidel, Dordrecht )Google Scholar
  33. Wilson, S., 1984, Electron correlation in molecules (Clarendon, Oxford). Wilson, S., 1985, Comput. Phys. Reports 2 389.Google Scholar
  34. Wilson, S., 1987a, Adv. Chem. Phys. 67, 439.CrossRefGoogle Scholar
  35. Wilson, S., 1987b, Meth. Comput. Chem 1, 117.Google Scholar
  36. Wilson, S., 1990, The many—body perturbation theory of atoms and molecules, ( Hilger, Bristol )Google Scholar
  37. Wilson, S., and Guest, M.F., 1980, Chem. Phys. Lett. 73 607.CrossRefGoogle Scholar
  38. Wilson, S., and Guest, M.F., 1981, Molec. Phys. 43, 1331CrossRefGoogle Scholar
  39. Wilson, S, and Saunders, V.R., 1979, J. Phys. B: At. Mol. Phys. 12 403; 1980, 15 683.Google Scholar
  40. Wilson, S., and Saunders, V.R., 1980, Comput. Phys. Commun. 19, 293.CrossRefGoogle Scholar
  41. Wilson, S., and Silver, D.M., 1976, Phys. Rev. A14, 1949.CrossRefGoogle Scholar
  42. Wilson, S., and Silver, D.M., 1979, Comput. Phys. Commun. 17, 47.CrossRefGoogle Scholar
  43. Wilson, S., and Silver, D.M., 1979, Intern. J. Quantum Chem. 15, 683.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. J. Baker
    • 1
  • S. Wilson
    • 1
  • D. Moncrieff
    • 2
  1. 1.Rutherford Appleton LaboratoryChilton, OxfordshireEngland
  2. 2.ANU Supercomputer FacilityAustralian National UniversityCanberraAustralia

Personalised recommendations