Advertisement

Metabolism of Halogenated Compounds—Biodehalogenation

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

The metabolism of halogenated hydrocarbons in vivo is initiated predominantly by two classes of enzymes—the cytochrome P-450-dependent monooxygenases and the glutathione S-transferases. These enzymes, in general, convert nonexcretable lipophilic compounds ultimately to hydrophilic metabolites that can be eliminated in urine and/or bile. For example, oxidative replacement of halogen with hydroxyl followed by glucuronide formation is a major pathway for detoxification and excretion. On the other hand, processes initiated by these enzymes are often responsible for conversion of a relatively harmless substrate into a more toxic or carcinogenic intermediate. Bioactivation of xenobiotics to toxic and/or carcinogenic metabolites has been the subject of extensive research and will be discussed in this chapter. The role of deiodinases in thyroid hormone function was discussed in some detail in Chapter 6. This will be reconsidered briefly in this chapter in the context of biodehalogenation mechanisms. Metabolism and detoxification of special classes of halogenated compounds (pesticides, TCDD, etc.) will also be considered.

Keywords

Carbon Tetrachloride Reductive Dechlorination Mercapturic Acid Diol Epoxide Vinyl Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, M. W., and Pohl, L. R., 1985. Halogenated alkanes, in Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, Orlando, Florida, pp. 283–315.Google Scholar
  2. Anders, M. W., Elfarra, A. A., and Lash, L. H., 1987. Cellular effects of reactive intermediates: Nephrotoxicity of S-conjugates of amino acids, Arch. Toxicol. 60: 103–108.PubMedCrossRefGoogle Scholar
  3. Anders, M. W., Lash, L., Dekant, W., Elfarra, A. A., and Dohn, D. R., 1988. Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites, Crit. Rev. Toxicol. 18: 311–341.PubMedCrossRefGoogle Scholar
  4. Artigas, F., Martinez, E. Camón, L. Gelpí, E., and Rodriguez-Farré, E., 1988. Brain metabolites of lindane and related isomers: Identification by negative ion mass spectrometry, Toxicology 49: 57–63.Google Scholar
  5. Baker, M. T., and Van Dyke, R. A., 1984. Metabolism-dependent binding of the chlorinated insecticide DDT and its metabolite, DDD, to microsomal protein and lipids, Biochem. Pharmacol. 33: 255–260.PubMedCrossRefGoogle Scholar
  6. Banki, K., Elfarra, A. A., Lash, L. H., and Anders, M. W., 1986. Metabolism of S-(2-chloro1,1,2-trifluoroethyl)-L-cysteine to hydrogen sulfide and the role of hydrogen sulfide in S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine-induced mitochondria) toxicity, Biochem. Biophys. Res. Commun. 138: 707–713.PubMedCrossRefGoogle Scholar
  7. Barbin, A., Laib, R. J., and Bartsch, H., 1985. Lack of miscoding properties of 7-(2-oxoethyl)guanine, the major vinyl chloride–DNA adduct, Cancer Res. 45: 2440–2444.PubMedGoogle Scholar
  8. Bartsch, H., 1986. The role of cyclic nucleic acid base adducts in carcinogenesis and mutagenesis, in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (B. Singer and H. Bartsch, eds.), IARC Scientific Publications, No. 70, Oxford University Press,.New York, pp. 3–14.Google Scholar
  9. Bickel, M. H., and Muehlebach, S., 1980. Pharmacokinetics and ecodisposition of polyhalogenated hydrocarbons: Aspects and concepts, Drug Metab. Rev. 11: 149–190.PubMedCrossRefGoogle Scholar
  10. Bolt, H. M., 1988. Roles of etheno-DNA adducts in tumorigenicity of olefins, CRC Crit. Rev. Toxicol. 18: 299–309.CrossRefGoogle Scholar
  11. Brault, D., 1985. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: Radical processes involving iron porphyrins, Environ. Health Perspect 64: 53–60.PubMedCrossRefGoogle Scholar
  12. Brimfield, A. A., and Street, J. C., 1979. Mammalian biotransformation of chlordane: In vivo and primary hepatic comparisons, Ann. N.Y. Acad. Sci. 320: 247–256.PubMedGoogle Scholar
  13. Brooks, G. T., 1986. Insecticide metabolism and selective toxicity, Xenobiotica 16:989–1002. Burka, L. T., Thorsen, A., and Guengerich, F. P., 1980. Enzymatic monooxygenation ofGoogle Scholar
  14. halogen atoms: Cytochrome P-450 catalyzed oxidation of iodobenzene by iodosobenzene, J. Am. Chem. Soc. 102: 7615–7616.Google Scholar
  15. Castellino, A. J., and Bruice, T. C., 1988. Intermediates in the epoxidation of alkenes by cytochrome P-450 models. 1. cis-Stilbene as a mechanistic probe, J. Am. Chem. Soc. 110: 158–162.CrossRefGoogle Scholar
  16. Chandurkar, P. S., and Matsumura, F., 1979. Metabolism of toxaphene components in rats, Arch. Environ. Contam. Toxicol. 8: 1–24.PubMedCrossRefGoogle Scholar
  17. Chang, R. L., Wood, A. W., Conney, A. H., Yagi, H. Sayer, J. M., Thakker, D. R., Jerina, D. M., and Levin, W., 1987. Role of diaxial versus diequatorial hydroxyl groups in the tumorigenic activity of a benzo[a]pyrene bay-region diol epoxide, Proc. Natl. Acad. Sci. USA 84: 8633–8636.PubMedCrossRefGoogle Scholar
  18. Chasseaud, L. F., 1979. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents, Adv. Cancer Res. 29: 175–274.PubMedCrossRefGoogle Scholar
  19. Cheeseman, K. H., Albano, E. F., Tomasi, A., and Slater, T. F., 1985. Biochemical studies on the metabolic activation of halogenated alkanes, Environ. Health Perspect 64: 85–101.PubMedCrossRefGoogle Scholar
  20. Collman, J. P., Brauman, J. I., Meunier, B., Hayashi, T., Kodaked, T., and Raybuck, S. A., 1985. Epoxidation of olefins by cytochrome P-450 model compounds. Kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity, J. Am. Chem. Soc. 107: 2000–2005.CrossRefGoogle Scholar
  21. Collman, J. P., Kodadek, T., and Brauman, J. I., 1986. Oxygenation of styrene by cytochrome P-450 model systems. A mechanistic study, J. Am. Chem. Soc. 108: 2588–2594.CrossRefGoogle Scholar
  22. Dekant, W., Lash, L. H., and Anders, M. W., 1987. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, Proc. Natl. Acad. Sci. USA 84: 7443–7447.PubMedCrossRefGoogle Scholar
  23. Dohn, D. R., Garziano, M. J., and Casida, J. E., 1988. Metabolites of [3-’3C]1,2-dibromo-3chloropropane in male rats studied by 13C and ‘H-“C correlated two-dimensional NMR spectroscopy, Biochem. Pharmacol. 37: 3485–3495.PubMedCrossRefGoogle Scholar
  24. Dolphin, D., Matsumoto, A., and Shortman, C., 1989. ß-Hydroxyalkyl a-metalloporphyrins: Models for epoxide and alkene generation from cytochrome P-450, J. Am. Chem. Soc. 111: 411–413.CrossRefGoogle Scholar
  25. Eder, E., Neudecker, T., Lutz, D., and Henschler, D., 1980. Mutagenic potential of allyl and allylic compounds. Structure-activity relationship as determined by alkylating and direct in vitro mutagenic properties, Biochem. Pharmacol. 29: 993–998.PubMedCrossRefGoogle Scholar
  26. Elfarra, A. A., and Anders, M. W., 1987. Renal processing of glutathione conjugates. Role in nephrotoxicity, Biochem. Pharmacol. 33: 3729–3732.CrossRefGoogle Scholar
  27. Elfarra, A. A., Baggs, R. B., and Anders, M. W., 1985. Structure-nephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: Role for an episulfonium ion, J. Pharmacol. Exp. Ther. 233: 512–516.PubMedGoogle Scholar
  28. Elfarra, A. A., Lash, L. H., and Anders, M. W., 1987. a-Ketoacids stimulate rat renal cystein conjugate ß-Iyase activity and potentiate the cytotoxicity of S-(1,2-dichlorovinyl)-Lcystein, Mol. Pharmacol. 31: 208–212.Google Scholar
  29. Engler, D., and Burger, A. G., 1984. The deiodination of the iodothyronines and of their derivatives in man, Endocrine Rev. 5: 151–184.CrossRefGoogle Scholar
  30. Fariss, M. W., Blanke, R. V., Saady, J. J., and Guzelian, P. S., 1980. Demonstration of major metabolic pathways for chlordecone ( Kepone) in humans, Drug. Metab. Dispos. 8: 434–438.PubMedGoogle Scholar
  31. Fawcett, S. C., King, L. J., Bunyan, P. J., and Stanley, P. I., 1987. The metabolism of 14C-DDT, 14C-DDD, ‘4C-DDE and ‘4C-DDMU in rats and Japanese quail, Xenobiotica 17: 525–538.PubMedCrossRefGoogle Scholar
  32. Fitzloff, J. F., Portig, J., and Stein, K., 1982. Lindane metabolism by human and rat liver microsomes, Xenobiotica 12: 197–202.PubMedCrossRefGoogle Scholar
  33. Fukami, J:I., 1980. Metabolism of several insecticides by glutathione S-transferase, Pharmacol. Ther. 10: 473–514.Google Scholar
  34. Gold, B., and Brunk, G., 1984. A mechanistic study of the metabolism of 1,1-dichloro2,2-bis(p-chlorophenyl)ethane (DDD) to 2,2-bis(p-chlorophenyl)acetic acid (DDA), Biochem. Pharmacol. 33: 979–982.PubMedCrossRefGoogle Scholar
  35. Groves, J. T., McClusky, G. A., White, R. E., and Coon, M. J., 1978. Aliphatic hydroxylation of highly purified liver microsomal cytochrome P-450. Evidence for a carbon radical intermediate, Biochem. Biophys. Res. Commun. 81: 154–160.PubMedCrossRefGoogle Scholar
  36. Groves, J. T., Avaria-Neisser, G. E., Fish, K. M., Imachi, M., and Kuczkowski, R. L., 1986. Hydrogen-deuterium exchange during propylene epoxidation by cytochrome P-450, J. Am. Chem. Soc. 108: 3837–3838.CrossRefGoogle Scholar
  37. Guengerich, F. P., 1982. Metabolism of vinyl halides: In vitro studies on roles of potential activated metabolites, Adv. Exp. Med. Biol. 136A - 136B: 685–692.Google Scholar
  38. Guengerich, F. P., and Macdonald, T. L., 1984. Chemical mechanism of catalysis by cytochrome P-450: A unified view, Acc. Chem. Res. 17: 9–16.CrossRefGoogle Scholar
  39. Guengerich, F. P., Crawford, W. M., Jr., Domoradzki, J. Y., Macdonald, T. L., and Watanabe, P. G., 1980. In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes, Toxicol. Appl. Pharmacol. 55: 303–317.Google Scholar
  40. Guengerich, F. P., Mason, P. S., Scott, W. T., Fox, T. R., and Watanabe, P. G., 1981. Roles of 2-haloethylene oxides and 2-haloacetaldehydes derived from vinyl bromide and vinyl chloride in irreversible binding to protein and DNA, Cancer Res. 41: 4391–4398.PubMedGoogle Scholar
  41. Guengerich, F. P., Willard, R. J., Shea, J. P., Richards, L. E., and Macdonald, T. L., 1984. Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened compounds, J. Am. Chem. Soc. 106: 6446–6447.CrossRefGoogle Scholar
  42. Guengerich, F. P., Peterson, L. A., Cmarik, J. L., Koga, N., and Inskeep, P. G., 1987. Activation of dihaloalkanes by glutathione conjugation and formation of DNA adducts, Environ. Health Perspect 76: 15–18.PubMedCrossRefGoogle Scholar
  43. Hecht, S. S., Amin, S., Melikian, A. A., LaVoie, E. J., and Hoffmann, D., 1985. Effects of methyl and fluorine substitution on the metabolic activation and tumorigenicity of polycyclic aromatic hydrocarbons, in Polycyclic Hydrocarbons and Carcinogenesis ( R. G. Harvey, ed.), American Chemical Society, Washington, D.C., pp. 85–105.CrossRefGoogle Scholar
  44. Henschler, D., 1985. Halogenated alkenes and alkynes, in Bioactivation of Foreign Compounds ( M. W. Anders, ed.), Academic Press, Orlando, Florida, pp. 317–437.Google Scholar
  45. Jerina, D. M., and Daly, J. W., 1976. Oxidation at carbon, in Drug Metabolism-From Microbes to Man ( D. V. Parke and R. L. Smith, eds.), Taylor and Francis, London, pp. 13–32.Google Scholar
  46. Keiner, M. J., McLenithan, J. C., and Anders, M. W., 1986. Thiol stimulation of the cytochrome P-450-dependent reduction of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) to 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), Biochem. Pharmacol. 35: 1805–1807.CrossRefGoogle Scholar
  47. Kieczka, H., and Kappus, H., 1980. Oxygen dependence of CC14-induced lipid peroxidation in vitro and in vivo, Toxicol. Lett. 5: 191–196.PubMedCrossRefGoogle Scholar
  48. Koga, N., Inskeep, P. B., Harris, T. M., and Guengerich, F. P., 1986. S-[2-(N 7 Guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane, Biochemistry 25: 2192–2198.Google Scholar
  49. Lang, B., and Maier, P., 1986. Lipid peroxidation dependent aldrin epoxidation in liver microsomes, hepatocytes and granulation tissue cells, Biochem. Biophys. Res. Commun. 138: 24–32.PubMedCrossRefGoogle Scholar
  50. Lang, B., Fred, K., and Maier, P., 1986. Prostaglanding synthase dependent aldrin epoxida- tion in hepatic and extrahepatic tissues of rats, Biochem. Pharmacol. 35: 3643–3645.PubMedCrossRefGoogle Scholar
  51. Lau, S. S., and Monks, T. J., 1988. The contribution of bromobenzene to our current understanding of chemically-induced toxicities, Life Sci. 42: 1259–1269.PubMedCrossRefGoogle Scholar
  52. Lehr, R. E., Kumar, S., Levin, W., Wood, A. W., Chang, R. L., Conney, A. H., Yagi, H., Sayer, J. M., and Jerina, D. M., 1985. The bay region theory of polycyclic aromatic hydrocarbon carcinogenesis, in Polycyclic Hydrocarbons and Carcinogenesis ( R. G. Harvey, ed.), American Chemical Society, Washington, D.C., pp. 63–84.CrossRefGoogle Scholar
  53. Lowrey, K., Glende, E. A., Jr., and Recknagel, R. 0., 1981. Destruction of liver microsomal calcium pump activity by carbon tetrachloride and bromotrichloromethane, Biochem. Pharmacol. 30: 135–140.PubMedCrossRefGoogle Scholar
  54. Macdonald, T. L., 1984. Chemical mechanisms of halocarbon metabolism, Crit. Rev. Toxicol. 11: 85–120.CrossRefGoogle Scholar
  55. Macdonald, T. L., Narasimhan, N., and Burka, L. T., 1980. Chemical and biological oxidation of organohalides. Peracid oxidation of alkyl iodides, J. Am. Chem. Soc. 102: 7760–7765.CrossRefGoogle Scholar
  56. Matsumura, F., 1975. Toxicology of Insecticides, Plenum Press, New York, pp. 165–251.CrossRefGoogle Scholar
  57. Mead, R. J., Moulden, D. L., and Twigg, L. E., 1985. Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to rat, brush-tailed possum, woylie and western grey kangaroo, Aust. J. Biol. Sci. 38: 139–149.PubMedGoogle Scholar
  58. Moore, L., Davenport, G. R., and Landon, E. J., 1976. Calcium uptake of a rat liver microsomal subcellular fraction in response to in vitro administration of carbon tetrachloride, J. Biol. Chem. 251: 1197–1201.PubMedGoogle Scholar
  59. Morgenstern, R., Guthenberg, C., and DePierre, J. W., 1982. Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B, and C, Eur. J. Biochem. 128: 243–248.PubMedCrossRefGoogle Scholar
  60. Neal, R., Gasiewicz, T., Geiger, L., Olson, J., and Sawahata, T., 1984. Metabolism of 2,3,7,8tetrachlorodibenzo-p-dioxin in mammalian systems, in Banbury Report 18. Biological Mechanisms of Dioxin Action (A. Poland and R. D. Kimbrough, eds.), Cold Spring Harbor Laboratory, pp. 49–60.Google Scholar
  61. Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., Hjelmeland, L. M., and Okey, A. B., 1981. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Annu. Rev. Pharmacol. Toxicol. 21: 431–462.PubMedCrossRefGoogle Scholar
  62. Neidleman, S. L., and Geigert, J., 1986. Biohalogenation: Principles, Basic Roles and Application, Ellis Horwood, Chichester, pp. 156–175.Google Scholar
  63. Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983. Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alkylation, J. Biol. Chem. 258: 4208–4213.Google Scholar
  64. Ozawa, N., and Guengerich, F. P., 1983. Evidence for the formation of an S-[2-(N 7 guanyl)ethyl]glutathione adduct in glutathione-mediated binding of the carcinogen 1,2dibromoethane to DNA, Proc. Natl. Acad. Sci. USA 80: 5266–5270.PubMedCrossRefGoogle Scholar
  65. Poiger, H., and Buser, H.-R., 1984. The metabolism of TCDD in the dog and rat, in Banbury Report 18. Biological Mechanisms of Dioxin Action ( A. Poland and R. D. Kimbrough, eds.), ( A. Poland and R. D. Kimbrough, eds. ), Cold Spring Harbor Laboratory, pp. 39–47.Google Scholar
  66. Quensen, J. F., III, Tiedje, J. M., and Boyd, S. A., 1988. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242: 752–754.PubMedCrossRefGoogle Scholar
  67. Quraishi, M. S., 1977. Biochemical Insect Control, Its Impact on Economy, Environment, and Natural Selection, John Wiley and Sons, New York, pp. 98–123.Google Scholar
  68. Saleh, M. A., and Casida, J. E., 1978. Reductive dechlorination of the toxaphene component 2,2,5-endo,6-exo,8,9,10-heptachlorobornane in various chemical, photochemical, and metabolic systems, J. Agric. Food Chem. 26: 583–590.CrossRefGoogle Scholar
  69. Scherer, E., Van Der Laken, C. J. Gwinner, L. M. Laib, R. J., and Emmelot, P., 1981. Modification of deoxyguanosine by chloroethylene oxide, Carcinogenesis 2: 671–677.PubMedCrossRefGoogle Scholar
  70. Selander, H. G., Jerina, D. M., and Daly, J. W., 1975. Metabolism of chlorobenzene with hepatic microsomes and solubilized cytochrome P-450 systems, Arch. Biochem. Biophys. 168: 309–321.PubMedCrossRefGoogle Scholar
  71. Singer, B., Spengler, S. J., Chavez, F., and Kusmierek, J. T., 1987. The vinyl chloride-derived nucleoside, N2,3-ethenoguanosine, is a highly efficient mutagen in transcription, Carcinogenesis 8: 745–747.PubMedCrossRefGoogle Scholar
  72. Slater, T. F., Cheeseman, K. H., and Ingold, K. U., 1985. Carbon tetrachloride toxicity as a model for studying free-radical mediated liver injury, Philos. Trans. Roy. Soc. London B 311: 633–645.CrossRefGoogle Scholar
  73. Soiefer, A. I., and Kostyniak, P. J., 1984. Purification of a fluoroacetate-specific defluorinase from mouse liver cytosol, J. Biol. Chem. 259: 10787–10792.PubMedGoogle Scholar
  74. Stacey, N., and Priestly, B. G., 1978. Lipid peroxidation in isolated rat hepatocytes: Relationship to toxicity of CC14, ADP/Fe3+, and diethyl maleate, Toxicol. Appl. Pharmacol. 45: 41–48.PubMedCrossRefGoogle Scholar
  75. Stevens, J. L., Ratnayaka, J. H., and Anders, M. W., 1980. Metabolism of dihalomethanes to carbon monoxide. IV. Studies in isolated rat hepatocytes, Toxicol. Appl. Pharmacol. 55: 484–489.PubMedCrossRefGoogle Scholar
  76. Suflita, J. M., Horowitz, A., Shelton, D. R., and Tiedje, J. M., 1982. Dehalogenation: A novel pathway for the anaerobic biodegradation of haloaromatic compounds, Science 218: 1115–1117.PubMedCrossRefGoogle Scholar
  77. Tachikzawa, H., MacDonald, T. L., and Neal, R. A., 1982. Rat liver microsomal metabolism of propyl halides, Mol. Pharmacol. 22: 745–751.Google Scholar
  78. Vadi, H. V., Schasteen, C. S., and Reed, D. J., 1985. Interactions of S-(2-haloethyl)mercapturic acid analogs with plasmid DNA, Toxicol. Appl. Pharmacol. 80: 386–396.PubMedCrossRefGoogle Scholar
  79. Vainio, H., and Saracci, R., 1984. Carcinogenicity of selected vinyl compounds, some aldehydes, haloethyl nitrosoureas and furocoumarins: An overview, in The Role of Cyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis (B. Singer and H. Bartsch, eds.), IARC Scientific Publications, No. 70, Oxford University Press, New York, pp. 15–29.Google Scholar
  80. van Bladeren, P. J., Breimer, D. D., van Huijgevoort, J. A. T. C. M., Vermeuien, N. P. E., and van der Gen, A., 1981. The metabolic formation of N-acetyl-S-2-hydroxy-t-cysteine from tetradeutero-1,2-dibromoethane. Relative importance of oxidation and glutathione conjugation in vivo, Biochem. Pharmacol. 30: 2499–2502.PubMedCrossRefGoogle Scholar
  81. Webb, W. W., Elfarra, A. A., Webster, K. D., Thom, R. E., and Anders, M. W., 1987. Role for an episulfonium ion in S-(2-chloroethyl)-DL-cysteine-induced cytotoxicity and its reactions with glutathione, Biochemistry 26: 3017–3023.PubMedCrossRefGoogle Scholar
  82. White, R. E., and Coon, M. J., 1980. Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedCrossRefGoogle Scholar
  83. Younes, M., and Siegers, C.-P., 1984. Interrelation between lipid peroxidation and other hepatotoxic events, Biochem. Pharmacol. 33: 3001–2003.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations