Advertisement

Persistent Polyhalogenated Compounds: Biochemistry, Toxicology, Medical Applications, and Associated Environmental Issues

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

This chapter will focus on several classes of halogenated compounds that have had widespread practical applications in industry and commerce. Because many of these compounds are chemically and thermally very stable, their extensive use has evoked serious concerns over potential longterm harmful effects to the environment. Indeed, many of these compounds have proven to be quite toxic, and environmental concerns are increased by their bioaccumulation in the food chain. Research designed to elucidate mechanisms of toxicity has helped define environmental issues and has produced significant biochemical data not only on the toxicology of the compounds of concern, but also on cellular mechanisms of the organisms involved, including humans. The environmental impact of certain halogenated compounds makes this topic a matter of extreme relevance, and inclusion of this subject in this volume clearly is appropriate. Biochemistry, toxicity, and potential environmental impact of several classes of halogenated insecticides will be considered first. This will be followed by a review of the problems associated with the toxicity of polyhalogenated hydrocarbons and related phenols, dioxins, and dibenzofurans. The development of halogenated volatile anesthetics and the use of perfluorinated aliphatic hydrocarbons as artificial oxygen carriers will be reviewed briefly. The biochemistry of simple halogenated aliphatic compounds, such as chloroform and carbon tetrachloride, is related in large part to metabolic activation to toxic species and will be discussed in Chapter 9.

Keywords

Volatile Anesthetic Aryl Hydrocarbon Hydroxylase TCDD Toxicity Cyclodiene Insecticide Artificial Oxygen Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. F., Hong, J.-S., Wilson, J. E., Lamb, J. C., Moore, J. A., Mason, G. A., and Bondy, S. C., 1982. Subchronic dietary exposure of rats to chlordecone (KeponeR) modifies levels of hypothalamic ß-endorphine, Neurotoxicology 3: 119–124.PubMedGoogle Scholar
  2. Bastomsky, C. H., 1977. Enhanced thyroxine metabolism and high uptake goiters in rats after a single dose of 2,3,7,8-tetrachloro-p-dioxin, Endocrinology 101: 292–296.PubMedGoogle Scholar
  3. Bickel, M. H., and Muehlebach, S., 1980. Pharmacokinetics and ecodisposition of polyhalogenated hydrocarbons: Aspects and concepts, Drug Metab. Rev. 11: 149–190.PubMedGoogle Scholar
  4. Birnbaum, L. S., Weber, H., Harris, M. W., Lamb, J. C., IV, and McKinney, J. D., 1985. Toxic interaction of specific polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-pdioxin: Increased incidence of cleft palate in mice, Toxicol. Appl. Pharmacol. 77: 292–302.PubMedGoogle Scholar
  5. Bloomquist, J. R., and Soderlund, D. M., 1985. Neurotoxic insecticides inhibit GABAdependent chloride uptake by mouse brain vesicles, Biochem. Biophys. Res. Commun. 133: 37–43.PubMedGoogle Scholar
  6. Bloomquist, J. R., Adams, P. M., and Soderlund, D. M., 1986. Inhibition of y-aminobutyric acid-stimulated chloride flux in mouse brain vesicles by polychlorocycloalkane and pyrethroid insecticides, Neurotoxicology 7: 11–20.PubMedGoogle Scholar
  7. Bondy, S. C., and Hong, J. S., 1987. Modulation of adrenal ornithine decarboxylase by chlordecone, p, p’-DDT and permethrin, Neurotoxicology 8: 15–22.PubMedGoogle Scholar
  8. Brinkman, U. A. Th., ad De Kok, A., 1980. Production, properties and usage, in Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products ( R. D. Kimbrough, ed.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 1–40.Google Scholar
  9. Brooks, G. T., 1986. Insecticide metabolism and selective toxicity, Xenobiotica 16: 989–1002.PubMedGoogle Scholar
  10. Chae, K., and McKinney, J. D., 1988. Molecular complexes of thyroid hormone tyrosyl rings with aromatic donors. Possible relationship to receptor protein interactions, J. Med. Chem. 31: 357–362.PubMedGoogle Scholar
  11. Chen, P. H., Tilson, H. A., Marbury, G. D., Karboum, F., and Hong, J. S., 1985. Effect of chlordecone (Kepone) on the rat brain concentration of 3-methoxy-4-hydroxyphenyl glycol: Evidence for a possible involvement of the norepinephrine system in chlordeconeinduced tremor, Toxicol. Appl. Pharmacol. 77: 158–164.PubMedGoogle Scholar
  12. Christ, D. D., Satoh, H., Kenna, J. G., and Pohl, L. R., 1988. Potential metabolic basis for enflurane hepatitis and the apparent cross-sensitization between enflurane and halothane, Drug Metab. Dispos. 16: 135–140.PubMedGoogle Scholar
  13. Clark, L. C., Jr., and Gollan, F., 1966. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure, Science 152: 1755–1756.PubMedGoogle Scholar
  14. Clark, L. C., Jr., and Moore, R. E., 1982. Basic and experimental aspects of oxygen transport by highly fluorinated organic compounds, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo, and Elsevier Biomedical Press, Amsterdam, pp. 213–226.Google Scholar
  15. Clark, L. C., Jr., Wesseler, E. P., Kaplan, S., Emory, C., Moore, R., and Denson, D., 1976. Intravenous infusion of cis-trans perfluorodecalin emulsions in the Rhesus monkey, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series 28, American Chemical Society, Washington, D.C., pp. 135–170.Google Scholar
  16. Coats, J. R., Metcalf, R. L., and Kapoor, I. P., 1977. Effective DDT analogues with altered aliphatic moieties. Isobutanes and chloropropanes, J. Agric. Food Chem. 25: 859–868.PubMedGoogle Scholar
  17. Cole, L. M., and Casida, J. E., 1986. Polychlorocycloalkane insecticide-induced convulsions in mice in relation to disruption of the GABA-regulated chloride ionophore, Life Sci. 39: 1855–1862.PubMedGoogle Scholar
  18. Costa, L. G., 1987a. Toxicology of pesticides: a brief history, in Toxicology of Pesticides: Experimental, Clinical and Regulatory Perspectives ( L. G. Costa, C. L. Galli, and S. D. Murphy, eds.), Spinger-Verlag, Berlin, pp. 1–10.Google Scholar
  19. Costa, L. G., 1987b. Interaction of insecticides with the nervous system, in Toxicology of Pesticides: Experimental, Clinical and Regulatory Perspectives ( L. G. Costa, C. L. Galli, and S. D. Murphy, eds.), Springer-Verlag, Berlin, pp. 77–91.Google Scholar
  20. Denson, D. D., Uyeno, E. T., Simon, R. L., Jr., and Peters, H. M., 1976. Preparation and physiological evaluation of some new fluorinated volatile anesthetics, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series 28, American Chemical Society, Washington, D.C., pp. 190–208.Google Scholar
  21. Desaiah, D.,1982. Biochemical mechanisms of chlordecone neurotoxicity: A review, Neurotoxicology 3: 103–110.Google Scholar
  22. Dobkin, A. B., 1979a. Anesthetic history, in Development of New Volatile Inhalation Anaesthetics (A. B. Dobkin, ed. ), Elsevier/North-Holland Press, pp. 1–4.Google Scholar
  23. Dobkin, A. B., 1979b. Enflurane (Ethrane), in Development of New Volatile Inhalation Anaesthetics ( A. B. Dobkin, ed.), Elsevier/North-Holland Press, Amsterdam, pp. 155–228.Google Scholar
  24. Dobkin, A. B., 1979c. Forane (isoflurane, compound 469), in Development of New Volatile Inhalation Anaesthetics (A. B. Dobkin, ed. ), Elsevier/North-Holland Press, pp. 229–264.Google Scholar
  25. Dubois, J. M., and Bergman, C., 1977. Asymmetrical currents and sodium currents in Ranvier nodes exposed to DDT, Nature 266: 741–742.PubMedGoogle Scholar
  26. Evers, A. S., Berkowitz, B. A., and d’Avignon, D. A., 1987. Correlation between the anaesthetic effect of halothane and saturable binding in brain, Nature 328: 157–160.PubMedGoogle Scholar
  27. Evers, A. S., Haycock, J. C., and d’Avignon, D. A., 1988. The potency of fluorinated ether anesthetics correlates with their 19F spin-spin relaxation times in brain tissue, Biochem. Biophys. Res. Commun. 151: 1039–1045.PubMedGoogle Scholar
  28. Faithfull, N. S., 1987. Fluorocarbons, current status and future applications, Anaesthesia 42: 234–242.PubMedGoogle Scholar
  29. Firestone, D., 1984. Chlorinated aromatic compounds and related dioxins and furans: Production, uses, and environmental exposure, in Banbury Report 18. Biological Mechanisms of Dioxin Action (A. Poland and R. D. Kimbrough, eds.), Cold Spring Harbor Laboratory, pp. 3–16.Google Scholar
  30. Forman, S. A., Verkman, A. S., Dix, J. A., and Solomon, A. K., 1985. n-Alkanols and halothane inhibit red cell anion transport and increase band 3 conformational change rate, Biochemistry 24: 4859–4866.Google Scholar
  31. Fukuta, T. R., 1976. Physicochemical aspects of insecticidal action, in Insect Biochemistry and Physiology ( C. F. Wilkenson, ed.), Plenum, New York, pp. 397–428.Google Scholar
  32. Gandolfi, O., Cheney, D. L., Hong, J. S., and Costa, E., 1984. On the neurotoxicity of chlordecone: A role for y-aminobutyric acid and serotonin, Brain Res. 303: 117–123.PubMedGoogle Scholar
  33. Gelman, S., and Van Dyke, R., 1988. Mechanism of halothane-induced hepatotoxicity: Another step on a long road, Anesthesiology 68: 479–482.PubMedGoogle Scholar
  34. Geyer, R. P., 1975. “Bloodless” rats through the use of artificial blood substitutes, Fed. Proc. 34:1499–1505.Google Scholar
  35. Goldstein, J. A., 1980. Structure-activity relationships for the biochemical effects and the relationships to toxicity, in Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products ( R. D. Kimbrough, ed.), Elsevier/North-Holland, Biomedical Press, Amsterdam, pp. 151–190.Google Scholar
  36. Hammond, B., Katzenellenbogen, B. S., Krauthammer, N., and McConnell, J., 1979. Estrogenic activity of the insecticide chlordecone (Kepone) and interaction with uterine estrogen receptors, Proc. Natl. Acad. Sci. USA 76: 6641–6645.PubMedGoogle Scholar
  37. Hardy, R. N., Lowe, K. C., and McNaughton, D. C., 1983. Acute responses during blood substitution in the conscious rat, J. Physiol. 338: 451–461.PubMedGoogle Scholar
  38. Hart, M. M., Reagan, R. L., and Adamson, R. H., 1973. The effects of isomers of DDD on the ACTH-induced steroid output, histology and ultrastructure of the dog adrenal cortex, Toxicol. Appl. Pharmacol. 24: 101–113.PubMedGoogle Scholar
  39. Hayes, W. J., Jr., 1982. Chlorinated hydrocarbon insecticides, in Pesticides Studied in Man (W. J. Hayes, ed.), Williams and Wilkins, Baltimore, pp. 172–283.Google Scholar
  40. Herr, D. W., Gallus, J. A., and Tilson, H. A., 1987. Pharmacological modification of tremor and enhanced acoustic startle by chlordecone and p, p’-DDT, Psychopharmacology (Berlin) 91: 320–325.Google Scholar
  41. Hille, B., 1977. Ionic channels of nerve: Questions for theoretical chemists, BioSystems 8: 195–199.PubMedGoogle Scholar
  42. Holan, G., 1969. New halocyclopropane insecticides and the mode of action of DDT, Nature 221: 1025–1029.PubMedGoogle Scholar
  43. Holan, G., 1971. Rational design of degradable insecticides, Nature 232: 644 647.Google Scholar
  44. Hong, J. S., Tilson, H. A., Uphouse, L. L., Gerhart, J., and Wilson, W. E., 1984. Effects of chlordecone exposure on brain neurotransmitters: Possible involvement of the serotonin system in chlordecone-elicited tremor, Toxicol. Appl. Pharmacol. 73: 336–344.PubMedGoogle Scholar
  45. Hong, J. S., Herr, D. W., Hudson, P. M., and Tilson, H. A., 1986. Neurochemical effects of DDT in rat brain in vivo, Arch. Toxicol., Suppl. 9: 14–26.Google Scholar
  46. Hong, L. H., McKinney, J. D., and Luster, M. I., 1987. Modulation of 2,3,7,8tetrachlorodibenzo -p-dioxin (TCDD)-mediated myelotoxicity by thyroid hormones, Biochem. Pharmacol. 36: 1361–1365.PubMedGoogle Scholar
  47. Hrdina, P. D., Singhal, R. L., Peters, D. A. V., and Ling, G. M., 1973. Some neurochemical alterations during acute DDT poisoning, Toxicol. Appl. Pharmacol. 25: 276–288.PubMedGoogle Scholar
  48. Hudson, P. M., Chen, P. H., Tilson, H. A., and Hong, J. S., 1985. Effects of p, p’-DDT on the rat brain concentrations of biogenic amine and amino acid neurotransmitters and their association with p, p’-DDT induced tremor and hyperthermia, J. Neurochem. 45: 1349–1355.PubMedGoogle Scholar
  49. Jensen, B. L., Caldwell, M. W., French, L. G., and Briggs, D. G., 1987. Toxicity, ultrastructural effects, and metabolic studies with 1-(o-chlorophenyl)-1-(p-chloropheny1)-2,2dichloroethane (o, p’-DDD) and its methyl analog in the guinea pig and rat, Toxicol. Appl. Pharmacol. 87: 1–9.PubMedGoogle Scholar
  50. Jordon, J. E., Grice, T., Mishra, S. K., and Desaiah, D., 1981. Acute chlordecone toxicity in rats: A relationship between tremor and ATPase activities, Neurotoxicology 2: 355–364.Google Scholar
  51. Joy, R. M., 1982. Chlorinated hydrocarbon insecticides, in Pesticides and Neurological Diseases ( D. J. Ecobichon and R. M. Joy, eds.), CRC Press, Boca Raton, Florida, pp. 91–150.Google Scholar
  52. Kaddus, A. A., Ghiasuddin, S. M., Matsumura, F., Scott, J. G., and Tanaka, K., 1983. Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the German cockroach, Pestic. Biochem. Physiol. 19: 157–166.Google Scholar
  53. Kimbrough, R. D., 1980. Environmental pollution of air, water and soil, in Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products (R. D. Kimbrough, ed.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 77–80.Google Scholar
  54. Kimbrough, R. D., 1984. Skin lesions in animals and humans: A brief overview, in Banbury Report 18. Biological Mechanisms of Dioxin Action (A. Poland and R. D. Kimbrough, eds.), Cold Spring Harbor Laboratory, pp. 357–363.Google Scholar
  55. Knutson, J. C., and Poland, A., 1982. Response of murine epidermis to 2,3,7,8-tetrachlorodibenzo-p-dioxin: Interaction of the Ah and hr loci, Cell 30: 225–234.PubMedGoogle Scholar
  56. Komulainen, H., and Bondy, S. C., 1987. Modulation of levels of free calcium within synaptosomes by organochlorine insecticides, J. Pharmacol. Exp. Ther. 241: 575–581.PubMedGoogle Scholar
  57. Korach, K. S., Sarver, P., Chae, K., McLachlan, J. A., and McKinney, J. D., 1988. Estrogen receptor-binding activity of polychlorinated hydroxybiphenyls: Conformationally restricted structural probes, Mol. Pharmacol. 33: 120–126.PubMedGoogle Scholar
  58. Kress, H. G., Eckhardt-Wallasch, H., Tas, P. W. L., and Koschel, K., 1987. Volatile anesthetics depress the depolarization-induced cytoplasmic calcium rise in PC 12 cells, FEBS Lett. 221:28–32.Google Scholar
  59. Kupfer, D., 1975. Effects of pesticides and related compounds on steroid metabolism and functions, CRC Crit. Rev. Toxicol. 4: 83–124.PubMedGoogle Scholar
  60. Lawrence, L. J., and Casida, J. E., 1984. Interactions of lindane, toxaphene and cyclodienes with brain-specific t-butylbicyclophosphorothionate receptor, Life Sci. 35: 171–178.PubMedGoogle Scholar
  61. Lowe, K. C., 1987. Perfluorocarbons as oxygen-transport fluids, Comp. Biochem. Physiol. 87A: 825–838.Google Scholar
  62. Lowe, K. C., and McNaughton, D. C., 1985. Intravascular fluid composition following blood replacement with fluosol-DA in the rat, Br. J. Pharmacol. 84: 116 P.Google Scholar
  63. Lowe, K. C., and McNaughton, D. C., 1986. Changes in plasma enzyme concentrations in response to blood substitution with perfluorocarbon emulsion in the conscious rat, Experientia 42: 1228–1231.PubMedGoogle Scholar
  64. Marshall, J. S., and Tompkins, L. S., 1968. Effects of o, p’-DDD and similar compounds on thyroxine binding globulin, J. Clin. Endocrin. Metab. 28: 386–392.Google Scholar
  65. Matsumura, F., 1975. Toxicology of Insecticides, Plenum Press, New York, pp. 165–251. Matsumura, F., and Ghiasuddin, S. M., 1983. Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms, J. Environ. Sci. B 18: 1–14.Google Scholar
  66. McBlain, W. A., 1987. The levo enantiomer of o, p’-DDT inhibits the binding of 17ß-estradiol to the estrogen receptor, Life Sci. 40: 215–221.PubMedGoogle Scholar
  67. McKinney, J. D., 1985. The molecular basis of chemical toxicity, Environ. Health Perspect. 61: 5–10.PubMedGoogle Scholar
  68. McKinney, J. D., Long, G. A., and Pedersen, L., 1984. PCB and dioxin binding to cytosol receptors: A theoretical model based on molecular parameters, Quant. Struct.-Act. Relat. 3: 99–105.Google Scholar
  69. McKinney, J. D., Darden, T., Lyerly, M. A., and Pedersen, L. G., 1985a. PCB and related compound binding to the Ah receptor(s). Theoretical model based on molecular parameters and molecular mechanics, Quant. Struct: Act. Relat. 4: 166–172.Google Scholar
  70. McKinney, J. D., Chae, K., McConnell, E. E., and Birnbaum, L. S., 1985b. Structure-induction versus structure-toxicity relationships for polychlorinated biphenyls and related aromatic hydrocarbons, Environ. Health Perspect. 60: 57–68.PubMedGoogle Scholar
  71. McKinney, J. D., Chae, K., Oatley, S. J., and Blake, C. C. F., 1985c. Molecular interactions of toxic chlorinated dibenzo-p-dioxins and dibenzofurans with thyroxine binding prealbumin, J. Med. Chem. 28: 375–381.PubMedGoogle Scholar
  72. McKinney, J. D., Fawkes, J., Jordan, S., Chae, K., Oatley, S., Coleman, R. E., and Briner, W., 1985d. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) as a potent and persistent thyroxine agonist: A mechanistic model for toxicity based on molecular reactivity, Environ. Health Perspect. 61: 41–53.Google Scholar
  73. McKinney, J. D., Fannin, R., Jordan, S., Chae, K., Rickenbacher, U., and Pedersen, L., 1987. Polychlorinated biphenyls and related compound interactions with specific binding sites for thyroxine in rat liver nuclear extracts, J. Med. Chem. 30: 79–86.PubMedGoogle Scholar
  74. Miller, K. W., 1985. Specific and nonspecific actions of general anesthetic agents, in Effects of Anesthesia ( B. G. Covino, H. A. Fozzard, K. Rehder, and G. Strichartz, eds.), American Physiological Society, Bethesda, Maryland, pp. 29–37.Google Scholar
  75. Narahashi, T., and Haas, G. H., 1967. DDT: Interaction with nerve membrane conductance changes, Science 157: 1438–1440.PubMedGoogle Scholar
  76. Narahashi, T., and Haas, G. H., 1968. Interaction of DDT with the components of lobster nerve membrane conductance, J. Gen. Physiol. 51: 177–198.PubMedGoogle Scholar
  77. Narahashi, T., and Yamasaki, T., 1960. Mechanisms of increase in negative afterpotential by dicophanum (DDT) in the giant axons of the cockroach, J. Physiol. 152: 122–140.PubMedGoogle Scholar
  78. Neal, R. A., Beatty, P. W., and Gasiewicz, T. A., 1979. Studies on the mechanisms of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), Ann. N.Y. Acad. Sci. 320: 204–213.PubMedGoogle Scholar
  79. Nebert, D. W., Eisen, H. J., Negishi, M., Lang, M. A., and Hjelmeland, L. M., 1981. Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Annu. Rev. Pharmacol. Toxicol. 21: 431–462.PubMedGoogle Scholar
  80. Nelson, J. A., 1974. Effects of dichlorodiphenyltrichloroethane (DDT) analogs and polychlorinated biphenyl (PCB) mixtures on 17ß-[3H]estradiol binding to rat uterine receptors, Biochem. Pharmacol. 23: 447–451.PubMedGoogle Scholar
  81. Poland, A., and Glover, E., 1973. Chlorinated dibenzo-p-dioxins: Potent inducers of S-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase, Mol. Pharmacol. 9: 736–747.PubMedGoogle Scholar
  82. Poland, A., and Glover, E., 1977. Chlorinated biphenyl induction of aryl hydrocarbon hydroxylase activity: A study of the structure-activity relationship, Mol. Pharmacol. 13: 924–938.PubMedGoogle Scholar
  83. Poland, A., and Knutson, J. C., 1982. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity, Annu. Rev. Pharmacol. Toxicol. 22: 517–554.Google Scholar
  84. Poland, A., Glover, E., and Kende, A. S., 1976. Stereospecific, high affinity binding of 2,3,7,8tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for aryl hydrocarbon hydroxylase, J. Biol. Chem. 251: 4936–4946.PubMedGoogle Scholar
  85. Prokocimer, P. G., Maze, M., Vickery, R. G., Kraemer, F. B., Gandjei, R., and Hoffman, B. B., 1988. Mechanism of halothane-induced inhibition of isoproterenol-stimulated lipolysis in rat adipocytes, Mol. Pharmacol. 33: 338–343.Google Scholar
  86. Quraishi, M. S., 1977. Biochemical Insect Control, Its Impact on Economy, Environment, and Natural Selection, John Wiley & Sons, New York, pp. 98–123.Google Scholar
  87. Reggiani, G., 1980. Localized contamination with TCDD-Seveso, Missouri and other areas, in Halogenated Biphenyls, Terphenyls, Naphthalenes, Dibenzodioxins and Related Products ( R. D. Kimbrough, ed.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 303–371.Google Scholar
  88. Riess, J. G., and Le Blanc, M., 1982. Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications, Pure Appl. Chem. 54: 2382–2406.Google Scholar
  89. Rozman, K., Rozman, T., and Greim, H., 1984. Effects of thyroidectomy and thyroxine on 2,3,7,8-tetrachloro-p-dioxin (TCDD) induced toxicity, Toxicol. Appl. Pharmacol. 72: 372–376.PubMedGoogle Scholar
  90. Safe, S., Bandiera, S., Sawyer, T., Robertson, L., Safe, L., Parkinson, A., Thomas, P. E., Ryan, D. E., Reik, L. M., Levin, W., Denomme, M. A., and Fujita, T., 1985. PCBs: Structure-function relationships and mechanism of action, Environ. Health Perspect. 60: 47–56.PubMedGoogle Scholar
  91. Satoh, H., Davies, H. W., Takemura, T., Gillette, J. R., Maeda, K., and Pohl, L. R., 1987. An immunochemical approach to investigating the mechanism of halothane-induced hepatotoxicity, Prog. Drug Metab. 10: 187–206.Google Scholar
  92. Schieble, T. M., Costa, A. K., Heffel, D. F., and Trudell, J. R., 1988. Comparative toxicity of halothane, isoflurane, hypoxia, and phenobarbital induction in monolayer cultures of rat hepatocytes, Anesthesiology 68: 485–494.PubMedGoogle Scholar
  93. Selinsky, B. S., Perlman, M. E., and London, R. E., 1988. In vivo nuclear magnetic resonance studies of hepatic methoxyflurane metabolism. II. A reevaluation of hepatic metabolic pathways, Mol. Pharmacol. 33: 567–573.Google Scholar
  94. Stoelting, R. K., 1987. Pharmacology and Physiology in Anesthetic Practice, J. B. Lippincott Co., Philadelphia, pp. 35–68.Google Scholar
  95. Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Co., New York, p. 1011.Google Scholar
  96. Tilson, H. A., Emerich, D., and Bondy, S. C., 1986a. Inhibition of ornithine decarboxylase alters neurological responsiveness to a tremorigen, Brain Res. 379: 147–150.PubMedGoogle Scholar
  97. Tilson, H. A., Hudson, P. M., and Hong, J. S., 1986b. 5,5-Diphenylhydantoin antagonizes the neurochemical and behavioral effects of p, p’-DDT but not of chlordecone, J. Neurochem. 47: 1870–1878.Google Scholar
  98. Urban, B. W., 1985. Modifications of excitable membranes by volatile and gaseous anesthetics, in Effects of Anesthesia ( B. G. Covino, H. A. Fozzard, K. Rehder, and G. Strichartz, eds.), American Physiological Society, Bethesda, Maryland, pp. 13–28.Google Scholar
  99. van den Bercken, J.,1970. The effect of DDT and dieldrin on myelinated nerve fibres, Eur. J. Pharmacol. 20:205–214.Google Scholar
  100. Van Poznak, A., 1979. Methoxyflurane (PenthraneR): Seeking its niche, in Development of New Volatile Inhalation Anaesthetics ( A. B. Dobkin, ed.), Elsevier/North-Holland Press, Amsterdam, pp. 113–153.Google Scholar
  101. Van Woert, M. H., Plaitakis, A., and Hwang, E. C., 1982. Neurotoxic effects of DDT [1,1,1trichloro-2,2-bis(p-chlorophenyl)ethane]: Role of serotonin, in Mechanisms of Action of Neurotoxic Substances ( K. N. Prasad and A. Vernadakis, eds.), Raven Press, New York, pp. 143–154.Google Scholar
  102. Vos, J. G., 1984. Dioxin-induced thymic atrophy and the suppression of thymus-dependent immunity, in Banbury Report 18. Biological Mechanisms of Dioxin Action (A. Poland and R. D. Kimbrough, eds.), Cold Spring Harbor Laboratory, pp. 401–410.Google Scholar
  103. Whitlock, J. P., Jr., and Galeazzi, D. R., 1984. 2,3,7,8-Tetrachlorodibenzo p-dioxin receptors in wild type and variant mouse hepatoma cells. Nuclear location and strength of nuclear binding, J. Biol. Chem. 259: 980–985.Google Scholar
  104. Wilson, S. L., and Fabian, L. W., 1979. Inhalation anaesthetics: Going, going, gone, in Development of New Volatile Inhalation Anaesthetics (A. B. Dobkin, ed.), Elsevier/NorthHolland Press, Amsterdam, pp. 5–57.Google Scholar
  105. Woolley, D. E., 1982. Neurotoxicity of DDT and possible mechanisms of action, in Mechanisms of Action of Neurotoxic Substances ( K. N. Prasad and A. Vernadakis, eds.), Raven Press, New York, pp. 95–141.Google Scholar
  106. Wu, C. H., Oxford, G. S., Narahashi, T., and Holan, G., 1980. Interaction of a DDT analogue with the sodium channel of lobster axon, J. Pharmacol. Exp. Ther. 212: 287–293.PubMedGoogle Scholar
  107. Wyrwicz, A. M., Schofield, J. C., Tillman, P. C., Gordon, R. E., and Martin, P. A., 1983. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance, Science 222: 428–430.PubMedGoogle Scholar
  108. Wyrwicz, A. M., Conboy, C. B., Ryback, K. R., Nichols, B. G., and Eisele, P., 1987. In vivo F-NMR study of isoflurane elimination from brain, Biochim. Biophys. Acta 927: 86–91.PubMedGoogle Scholar
  109. Yeager, J., and Munson, S., 1945. Physiological evidence of a site of action of DDT in an insect, Science 102: 305–307.PubMedGoogle Scholar
  110. Yokoyama, K., Suyama, T., and Naito, R., 1982. Development of perfluorochemical (PFC) emulsions as an artificial blood substitute, in Biomedicinal Aspects of Fluorine Chemistry ( R. Filler and Y. Kobayashi, eds.), Kodansha Ltd., Tokyo, and Elsevier Biomedical Press, Amsterdam, pp. 191–212.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations