• Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


A vast number of halogenated compounds are present in the biosphere. While most of these have resulted from the work of synthetic chemists, a large number are naturally occurring—products of nature’s halogenation processes. The majority of these naturally occurring halogenated compounds are produced by haloperoxidases, a group of enzymes widely distributed in nature that are capable of halogenating a broad spectrum of organic substrates. A comprehensive review of recent research involved with isolation, identification, and biological evaluation of naturally occurring halogenated compounds, now an active area of natural products chemistry, is beyond the scope of this chapter. Recent reviews are available and will be cited (e.g., Neidleman and Geigert, 1986, 1987). While examples of halometabolites produced by various species will be given—particularly compounds that have useful medical applications—the emphasis in this chapter will be placed on the biochemical processes that produce the halometabolites. Thus, the mechanism of halogenation by haloperoxidases will be reviewed, and specific examples of haloperoxidases will be given, including recently identified vanadium-containing nonheme haloperoxidases.


Marine Organism Thyroid Peroxidase Marine Natural Product Halogenating Species Hypohalous Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P. C., and Krinsky, N. I., 1982. A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions, and protons, J. Biol. Chem. 257: 13240–13245.PubMedGoogle Scholar
  2. Beissner, R. S., Guilford, W. J., Coates, R. M., and Hager, L. P., 1981. Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin, Biochemistry 20: 3724–3731.PubMedCrossRefGoogle Scholar
  3. Blanke, S. R., and Hager, L. P., 1988. Identification of the fifth axial heme ligand of chloroperoxidase, J. Biol. Chem. 263: 18739–18743.PubMedGoogle Scholar
  4. Bohlmann, F., Jakupovic, J., King, R. M., and Robinson, H., 1981. New germacranolides, guaianolides and rearranged guaianolides from Lasiolaena santosii, Phytochemistry 20: 1613–1622.CrossRefGoogle Scholar
  5. Brown, F. S., and Hager, L. P., 1967. Chloroperoxidase. IV. Evidence for an ionic electrophilic substitution mechanism, J. Am. Chem. Soc. 89: 719–720.PubMedCrossRefGoogle Scholar
  6. Carte, B., and Faulkner, D. J., 1983. Defensive metabolites from three nembrothid nudibranchs, J. Org. Chem. 48: 2314–2318.CrossRefGoogle Scholar
  7. Carter, G. T., Rinehart, K. L., Jr., Li, H. L., Kuentzel, S. L., and Conner, J. L., 1978. Brominated indoles from Laurencia brongniartii, Tetrahedron Lett. 1978: 4479–4482.CrossRefGoogle Scholar
  8. Cutterbuck, P. W., Mukhopadhyay, S. L., Oxford, A. E., and Raistrick, H., 1940. Studies in the biochemistry of micro-organisms. 65 (A) A survey of chlorine metabolism by moulds. (B) Caldariomycin, C5 Fig 02C12, a metabolic product of Caldariomyces fumago Woronichin, Biochem. J. 34: 664–677.Google Scholar
  9. Dawson, J. H., 1988. Probing structure-function relations in heme-containing oxygenases and peroxidases, Science 240: 433–439.PubMedCrossRefGoogle Scholar
  10. de Boer, E., Tromp, M. G. M., Plat, H., Krenn, G. E., and Wever, R., 1986. Vanadium(V) as an essential element for haloperoxidase activity in marine brown algae: Purification and characterization of a vanadium(V)-containing bromoperoxidase from Laminaria saccharina, Biochim. Biophys. Acta 872: 104–115.CrossRefGoogle Scholar
  11. de Boer, E., Boon, K., and Wever, R., 1988. Electron paramagnetic resonance studies on conformational states and metal ion exchange properties of vanadium bromoperoxidase, Biochemistry 27: 1629–1635.CrossRefGoogle Scholar
  12. Dunford, H. B., Lambeir, A.-M., Kashem, M. A., and Pickard, M., 1987. On the mechanism of chlorination by chloroperoxidase, Arch. Biochem. Biophys. 252: 292–302.PubMedCrossRefGoogle Scholar
  13. Fang, G.-H., Kenigsberg, P., Axley, M. J., Nuell, M., and Hager, L. P., 1986. Cloning and sequencing of chloroperoxidase cDNA, Nucleic Acids Res. 14: 8061–8071.PubMedCrossRefGoogle Scholar
  14. Fenical, W., 1979. Molecular aspects of halogen-based biosynthesis of marine natural products, Recent Adv. Phytochem. 13: 219–239.Google Scholar
  15. Fenical, W., 1982. Natural products chemistry in the marine environment, Science 215: 923–928.PubMedCrossRefGoogle Scholar
  16. Fowden, L., 1968. The occurrence and metabolism of carbon-halogen compounds, Proc. Roy. Soc. B 171: 5–18.CrossRefGoogle Scholar
  17. Fusetani, N., 1987. Marine metabolites which inhibit development of echinoderm embryos, in Bioorganic Marine Chemistry, Vol. 1 ( P. J. Scheuer, ed.), Springer-Verlag, Heidelberg, pp. 61–92.CrossRefGoogle Scholar
  18. Gonzalez, A. G., Arteaga, J. M., Martin, J. D., Rodriguez, M. L., Fayos, J., and MartinezRipolls, M., 1978. Two new polyhalogenated monoterpenes from the red alga Plocamium cartilagineum, Phytochemistry 17: 947–948.CrossRefGoogle Scholar
  19. Gonzalez, A. G., Darias, V., and Estevez, E., 1982. Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae, Planta Med. 44: 44–46.PubMedCrossRefGoogle Scholar
  20. Gschwend, P. M., MacFarland, J. K., and Newman, K. A., 1985. Various halogenated compounds released to seawater from temperate marine macroalgae, Science 227: 1033–1035.PubMedCrossRefGoogle Scholar
  21. Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y., 1985. Chlorovulones, new halogenated marine prostanoids with an antitumor activity from the stolonifer Clavularia virdis Quoy and Gaimard, Tetrahedron Lett. 26: 5787–5790.CrossRefGoogle Scholar
  22. Itoh, N., Izumi, Y., and Yamada, H., 1986. Characterization of nonheme type bromoperoxidase in Corallina pilulifera, J. Biol. Chem. 261: 5194–5200.PubMedGoogle Scholar
  23. Itoh, N., Izumi, Y., and Yamada, H., 1987. Haloperoxidase-catalyzed halogenation of nitrogen-containing aromatic heterocycles represented by nucleic bases, Biochemistry 26: 282–289.CrossRefGoogle Scholar
  24. Kimura, S., Kotani, T., McBride, O. W., Umeki, K., Hirai, K., Nakayama, T., and Ohtaki, S., 1987. Human thyroid peroxidase: Complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs, Proc. Natl. Acad. Sci. USA 84: 5555–5559.PubMedCrossRefGoogle Scholar
  25. Krenn, B. E., Plat, H., and Wever, R., 1988. Purification and some characteristics of a nonhaem bromoperoxidase from Streptomyces aureofaciens, Biochim. Biophys. Acta 952: 255–260.PubMedCrossRefGoogle Scholar
  26. Lambeir, A.-M., and Dunford, H. B., 1983. A steady state kinetic analysis of the reaction of chloroperoxidase with peracetic acid, chloride, and 2-chlorodimedone, J. Biol. Chem. 258: 13558–13563.PubMedGoogle Scholar
  27. Lee, T. D., Geigert, J., Dalietos, D. J., and Hirano, D. S., 1983. Neighboring group migration in enzyme-mediated halohydrin formation, Biochem. Biophys. Res. Commun. 110: 880–883.PubMedCrossRefGoogle Scholar
  28. Le-Van, N., and Wratten, S. J., 1984. Compound 30.4, an unusual chlorinated 1,4-benzoxazin-3-one derivative from corn (Zea mays), Tetrahedron Lett. 25: 145–148.CrossRefGoogle Scholar
  29. Libby, R. D., Thomas, J. A., Kaiser, L. W., and Hager, L. P., 1982. Chloroperoxidase halogenating reactions. Chemical versus enzymic halogenation intermediates, J. Biol. Chem. 257: 5030–5037.PubMedGoogle Scholar
  30. Liu, T.-N. E., M’Timkulu, T., Geigert, J., Wolf, B., Neidleman, S. L., Silva, D., and HunterCevera, J. C., 1987. Isolation and characterization of a novel nonheme chloroperoxidase, Biochem. Biophys. Res. Commun. 142: 329–333.PubMedCrossRefGoogle Scholar
  31. Manthey, J. A., and Hager, L. P., 1989. Characterization of the catalytic properties of bromoperoxidase, Biochemistry 28: 3052–3057.CrossRefGoogle Scholar
  32. McConnell, O. J., and Fenical, W., 1977a. Halogenated metabolites-including Favorsky rearrangement products-from the red seaweed Bonnemaisonia nootkana, Tetrahedron Lett. 1977: 4159–4162.CrossRefGoogle Scholar
  33. McConnell, O. J., and Fenical, W., 1977b. Halogen chemistry of the red alga Asparagopsis, Phytochemistry 16: 367–374.CrossRefGoogle Scholar
  34. Morris, D. R., and Hager, L. P., 1966. Chloroperoxidase I. Isolation and properties of the crystalline glycoprotein, J. Biol. Chem. 241: 1763–1768.PubMedGoogle Scholar
  35. Munro, M. H. G., Luibrand, R. T., and Blunt, J. W., 1987. The search for antiviral and anticancer compounds from marine organisms, in Bioorganic Marine Chemistry, Vol. 1 ( P. J. Scheuer, ed.), Springer-Verlag, Heidelberg, pp. 93–176.CrossRefGoogle Scholar
  36. Neary, J. T., Soodak, M., and Maloof, F., 1984. Iodination by thyroid peroxidase, Methods Enzymol. 107: 445–476.PubMedCrossRefGoogle Scholar
  37. Neidleman, S. L., 1975. Microbial halogenation, CRC Crit. Rev. Mircrobiol. 5:333–358. Neidleman, S. L., and Geigert, J., 1983. The enzymatic synthesis of heterogenous dihalide derivatives: A unique biocatalytic discovery, Trends Biotechnol. 1: 21–25.CrossRefGoogle Scholar
  38. Neidleman, S. L., and Geigert, J., 1986. Biohalogenation: Principles, Basic Roles, and Applications, Ellis Horwood, Chichester, England.Google Scholar
  39. Neidleman, S. L., and Geigert, J., 1987. Biological halogenation: Roles in nature, potential in industry, Endeavor 11: 5–15.CrossRefGoogle Scholar
  40. Ortiz de Montellano, P. K., Choe, Y. S., DePillis, G., and Catalano, C. E., 1987. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase, J. Biol. Chem. 262: 11641–11646.Google Scholar
  41. Osada, H., and Isono, K., 1985. Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic, Antimicrob. Agents Chemother. 27: 230–233.PubMedGoogle Scholar
  42. Plat, H., Krenn, B. E., and Wever, R., 1987. The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme, Biochem. J. 248: 277–279.PubMedGoogle Scholar
  43. Ramakrishnan, K., Oppenhuizen, M. E., Saunders, S., and Fisher, J., 1983. Stereoselectivity of chloroperoxidase-dependent halogenation, Biochemistry 22: 3271–3277.PubMedCrossRefGoogle Scholar
  44. Sanada, M., Miyano, T., Iwadara, S., Williamson, J. M., Arison, B. H., Smith, J. L., Douglas, A. W., Liesch, J. M., and Inamine, E., 1986. Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya, J. Antibiot. 39: 259–265.PubMedCrossRefGoogle Scholar
  45. Schmitz, F. J., and Gopichand, Y., 1978. (7E, 13, 15Z)-14,16-Dibromo-7,13,15hexadecatriene-5-ynoic acid. A novel dibromo acetylenic acid from the marine sponge Xestospongia muta, Tetrahedron Lett. 1978: 3637–3640.Google Scholar
  46. Siuda, J. F., and DeBernardis, J. F., 1973. Naturally occurring halogenated organic compounds, Lloydia 36: 107–143.PubMedGoogle Scholar
  47. Siuda, J. F., VanBlaricom, G. R., Shaw, P. D., Johnson, R. D., White, R. H., Hager, L. P., and Rinehart, K. L., Jr., 1975. 1-Iodo-3,3-bromo-2-heptanone, 1,1,3,3-tetrabromo-2heptanone, and related compounds from the red alga Bonnemaisonia hamifera, J. Am. Chem. Soc. 97: 937–938.Google Scholar
  48. Sono, M., Dawson, J. H., Hall, K., and Hager, L. P., 1986. Ligand and halide binding properties of chloroperoxidase: Peroxidase-type active site heure environment with cytochrome P-450 type endogenous axial ligand and spectral properties, Biochemistry 25: 347–356.PubMedCrossRefGoogle Scholar
  49. Suzuki, M., Morita, Y., Yanagisawa, A., Baker, B. J., Scheuer, P. J., and Noyori, R., 1988. Synthesis and structural revision of (7E)- and (7Z)-punaglandin 4, J. Org. Chem. 53: 286–295.CrossRefGoogle Scholar
  50. Theiler, R., Cook, J. C., Hager, J. F., and Siuda, J. F., 1978. Halohydrocarbon synthesis by bromoperoxidase, Science 202: 1094–1096.PubMedCrossRefGoogle Scholar
  51. Thomas, E. L., Pera, K. A., Smith, K. W., and Chwang, A. K., 1983. Inhibition of Streptococ- cus mutans by the lactoperoxidase antimicrobial system, Infect. Immun. 39: 767–778.PubMedGoogle Scholar
  52. Turner, C. D., Chernoff, S. B., Taurog, A., and Rawitch, A. B., 1983. Differences in iodinated peptides and thyroid hormone formation after chemical and thyroid peroxidase-catalyzed iodination of human thyroglobulin, Arch. Biochem. Biophys. 222: 245–258.PubMedCrossRefGoogle Scholar
  53. Turner, W. B., 1971. Fungal Metabolites, Academic Press, New York.Google Scholar
  54. Tymiak, A. A., Rinehart, K. L., Jr., and Bakus, G. J., 1985. Constituents of morphologically similar sponges. Aplysina and Smenospongia species, Tetrahedron 41: 1039–1047.CrossRefGoogle Scholar
  55. van Pee, K.-H., and Lingens, F., 1984. Detection of a bromoperoxidase in Streptomyces phaeochromogenes, FEBS Lett. 173: 5–8.PubMedCrossRefGoogle Scholar
  56. van Pee, K.-H., and Lingens, F., 1985. Purification of bromoperoxidase from Pseudomonas aureofaciens, J. Bacteriol. 161: 1171–1175.PubMedGoogle Scholar
  57. Welinder, K. G., 1976. Covalent structure of the glycoprotein horseradish peroxidase (EC, FEBS Lett. 72: 19–23.PubMedCrossRefGoogle Scholar
  58. Weyer, R., de Boer, E., Plat, H., and Krenn, B. E., 1987. Vanadium-an element involved in the biosynthesis of halogenated compounds and in nitrogen fixation, FEBS Lett. 216: 1–3.CrossRefGoogle Scholar
  59. Weyer, R., Krenn, B. E., de Boer, E., Offenberg, H., and Plat, H., 1988, Structure and function of vanadium-containing bromoperoxidases, Frog. Clin. Biol. Res. 274: 477–493.Google Scholar
  60. Wiesner, W., van Pee, K.-H., and Lingens, F., 1986. Detection of a new chloroperoxidase in Pseudomonas pyrrocinia, FEBS Lett. 209: 321–324.PubMedCrossRefGoogle Scholar
  61. Wiesner, W., van Pee, K.-H., and Lingens, F., 1988. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia, J. Biol. Chem. 263: 13725–13732.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations