Advertisement

Biochemistry of Inorganic Bromide

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

Bromine is recognized as the most abundant and ubiquitous of trace elements. Despite this, essential roles in plants, microorganisms, or animals have been difficult to demonstrate (Nielsen, 1986). Early interest in the biochemistry of bromide (Br) stemmed from the use of bromides as sedatives and anticonvulsants, a use introduced in 1857. Toxicity associated with Br ingestion through use of over-the-counter bromine-containing drugs—a medical problem that, though rare, still persists—and the recognition of the presence of increased concentrations of Br in food and water due to the use of brominated pesticides and postharvest fumigants are among factors that have caused interest in the biochemistry, pharmacology, and toxicology of Br to be maintained.

Keywords

Tracheal Epithelium Mushroom Tyrosinase Sodium Bromide Human Eosinophil Chemical Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. C., Stjernholm, R. L., and Steele, R. H., 1972. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochim. Biophys. Res. Commun. 47: 679–684.CrossRefGoogle Scholar
  2. Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: Role of extracellular chloride, J. Pharmacol. Exp. Ther. 245: 299–304.PubMedGoogle Scholar
  3. Berglindh, T., 1977. Absolute dependence on chloride for acid secretion in isolated gastric glands, Gastroenterology 73: 874–880.PubMedGoogle Scholar
  4. Bowen, H. J. M., 1966. Trace Elements ir!_Bioehemistry,-Academic Press, London, p. 76.Google Scholar
  5. Ca-bantchik, Z. I.,Knauf, P. A., and Rothstein, A., 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochim. Biophys. Acta 515:239–302.Google Scholar
  6. Cheek, D. B., 1961. Extracellular volume; its structure and measurement and the influence of age and disease, J. Pediatr. 58: 103–125.PubMedCrossRefGoogle Scholar
  7. Damoder, R., Klimov, V. V., and Dimukes, G. C., 1986. The effect of Cl-depletion and X–reconstitution on the oxygen-evolution rate, the yield of the multiline manganese EPR signal and EPR signal II in isolated photosystem-II complex, Biochim. Biophys. Acta 848: 378–391.PubMedCrossRefGoogle Scholar
  8. Fong, P., Illsley, N. P., Widdecombe, J. H., and Verkman, A. S., 1988. Chloride transport in apical membrane vesicles from bovine tracheal epithelium: Characterization using a fluorescent indicator, J. Membr. Biol. 104: 233–239.PubMedCrossRefGoogle Scholar
  9. Foote, C. S., Abakerli, R. B., Clough, R. L., and Lehrer, R. I., 1981. On the question of singlet oxygen production in polymorphonuclear leukocytes, in Bioluminescence and Chemiluminescence ( M. A. DeLuca and W. D. McElroy, eds.), Academic Press, New York, pp. 81–88.Google Scholar
  10. Frizzell, R. A., 1987. Cystic fibrosis: A disease of ion channels? Trends Neurosci. 10: 190–193.CrossRefGoogle Scholar
  11. Gleich, G. J., and Loegering, D. A., 1984. Immunology of eosinophils, Annu. Rev. Immunol. 2: 429–459.PubMedCrossRefGoogle Scholar
  12. Halm, D. R., Rechkemmer, G., Schoumacher, R. A., and Frizzell, R. A., 1988a. Apical membrane chloride channels in a colonic cell line activated by secretory agonists, Am. J. Physiol. 254: C505–0511.PubMedGoogle Scholar
  13. Halm, D. R., Rechkemmer, G. R., Schoumacher, R. A., and Frizzell, R. A., 1988b. Biophysical properties of a chloride channel in the apical membrane of a secretory epithelial cell, Comp. Biochem. Physiol. 90A: 597–601.CrossRefGoogle Scholar
  14. Harrison, J. E., Watson, B. D., and Schultz, J., 1978. Myeloperoxidase and singlet oxygen: A reappraisal, FEBS Lett. 92: 327–332.PubMedCrossRefGoogle Scholar
  15. Hellerstein, S., Kaiser, C., Des Darrow, D., and Darrow, D. C., 1960. The distribution of bromide and chloride in the body, J. Clin. Invest. 39: 282–287.PubMedCrossRefGoogle Scholar
  16. Higashijima, T., Ferguson, K. M., and Sternweis, P. C., 1987. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride, J. Biol. Chem. 262: 3597–3602.PubMedGoogle Scholar
  17. Kanofsky, J. R., and Tauber, A. I., 1983. Non-physiologic production of singlet oxygen by human neutrophils and by myeloperoxidase-H2O2-halide system, Blood 62: 82a.Google Scholar
  18. Kanofsky, J. R., Wright, J., Miles-Richardson, G. E., and Tauber, A. I., 1984. Biochemical requirements for singlet oxygen production by purified human myeloperoxidase, J. Clin. Invest. 74: 1489–1495.PubMedCrossRefGoogle Scholar
  19. Kanofsky, J. R., Hoogland, H., Weyer, R., and Weis, S. J., 1988. Singlet oxygen production by human eosinophils, J. Biol. Chem. 263: 9692–9696.PubMedGoogle Scholar
  20. Kolb, L., and Himmelsbach, C. K., 1938. Clinical studies of drug addiction, III. A critical review of the withdrawal treatments with method of evaluating abstinence syndromes, Am. J. Psych. 94: 759–799.Google Scholar
  21. Levitzki, A., and Steer, M. L., 1974. The allosteric activation of mammalian a-amylase by chloride, Eur. J. Biochem. 41: 171–180.PubMedCrossRefGoogle Scholar
  22. Martinez, J. H., Solano, F., Penafiel, R., Galindo, J. D., Iborra, J. L., and Lozano, J. A., 1986. Comparative study of tyrosinases from different sources: Relationship between halide inhibition and the enzyme active site, Comp. Biochem. Physiol. 83B: 633–636.Google Scholar
  23. Marvizón, J. C. G., and Skolnick, P., 1988. Enhancement of t-[’SS]butylbicyclophosphorothionate and [3H]strychnine binding by monovalent anions reveals similarities between y-aminobutyric acid-and glycine-gated chloride channels, J. Neurochem. 50: 1632–1639.PubMedCrossRefGoogle Scholar
  24. Mason, M. F., 1936. Halide distribution in body fluids in chronic bromide intoxication, J. Biol. Chem. 113: 61–74.Google Scholar
  25. McRoberts, J. A., Erlinger, S., Rindler, M. J., and Saier, M. H., Jr., 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na +, K +, and Cl -, J. Biol. Chem. 257: 2260–2266.PubMedGoogle Scholar
  26. Mendelsohn, W. B., 1980. The Use and Misues of Sleeping Pills. A Clinical Guide, Plenum, New York, p. 156.Google Scholar
  27. Montoya, G. A., and Riker, W. K., 1982. A study of the actions of bromide ion on frog sympathetic ganglion, Neuropharmacology 21: 581–585.PubMedCrossRefGoogle Scholar
  28. Nielsen, F. H., 1986. Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr. Be, Bi, Ga, Au, In, Nb, Sc, Te, TI, W, in Trace Elements in Human and Animal Nutrition, Vol. II (W. Mertz, ed.), 5th ed., Academic Press, Orlando, Florida, pp. 415–463.Google Scholar
  29. O’Grady, S. M., Palfrey, H. C., and Field, M., 1987. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues, Am. J. Physiol. 253: C177 - C192.PubMedGoogle Scholar
  30. Ono, T.-A., Nakayama, H, Gleiter, H., Inoue, Y., and Kawamori, A., 1987. Modification of the properties of S2 state in photosynthetic 02-evolving center by replacement of chloride with other anions, Arch. Biochem. Biophys. 256: 618–624.PubMedCrossRefGoogle Scholar
  31. Palfrey, H. C., and Greengard, P., 1981. Hormone-sensitive ion transport systems in erythrocytes as models for epithelial ion pathways, Ann. N.Y. Acad. Sci. 372: 291–308.PubMedCrossRefGoogle Scholar
  32. Rauws, A. G., 1983. Pharmacokineticsof bromide ion-an overview, Food Chem. Toxicol. wan Leeuwen, F. X. R., and Sangster, B., 1987. The toxicology of bromide ion, CRC Crit. Rev. Toxicol. 18: 189 213.Google Scholar
  33. Leeuwen, F. X. R., den Tonkelaar, E. M., and van Logten, M. J., 1983. Toxicity of sodium bromide in rats: Effect on endocrine system and reproduction, Food Chem Toxicol. 21: 383–389.PubMedCrossRefGoogle Scholar
  34. Leeuwen, F. X. R., Hanemaaijer, R., and Loeber, J. G., 1988. The effect of sodium bromide on thyroid function, Toxicology, Suppl. 12: 93–97.Google Scholar
  35. Logten, M. J., Wolthuis, M., Rauws, A. G., Kroes, R., den Tonkelaar, E. M., Berkvens, H., and van Esch, G. J., 1974. Semichronic toxicity study of sodium bromide in rats, Toxicology 2: 257–267.PubMedCrossRefGoogle Scholar
  36. Versieck, J., and Cornelis, R., 1989. Trace Elements in Human Plasma or Serum, CRC Press, Boca Raton, Florida, pp. 76–78, 168–169.Google Scholar
  37. Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., and Regiani, S., 1986. Brominating oxidants generated by human eosinophils, Science 234: 200–203.PubMedCrossRefGoogle Scholar
  38. Woodbury, D. M., and Pippenger, C. E., 1982. Bromides, in Antiepileptic Drugs ( D. M. Woodbury, J. K. Penry, and C. E. Pippenger, eds.), Raven Press, New York, pp. 791–801.Google Scholar
  39. Wright, E. M., and Diamond, J. M., 1977. Anion selectivity in biological systems, Phys. Rev. 57: 109–156.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations