Biochemistry of Inorganic Chloride

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


The issues involved with the biochemistry of inorganic chloride (Cl) differ considerably from those considered for the biochemistry of inorganic fluoride (F). Whereas F is present in trace amounts in the body, Cl is a normal and substantial constituent of biological fluids. Whereas extracellular fluid—the composition of which resembles that of pre-Cambrian era seawater—has a high concentration of Na+ and Cl and a low concentration of K+, intracellular fluid has a large quantity of K+ and phosphate, primarily organically bound, but little Cl. The maintenance of proper compositions of these fluids, vital to the well-being of the cell, depends on the proper availability and identity of nutrients in the extracellular fluid, cellular metabolism, and transport properties of cellular membranes. Because of the position of chloride as the most abundant anion in the extracellular medium, membrane transport of chloride has assumed an important role in many processes, including absorption, secretion, and control of osmotic pressure, cell volume, fluid pH, and electrolyte balance. Cl is also a common counterion in proteins, especially basic ones.


Cystic Fibrosis Chloride Channel Anion Transport Chloride Transport NIFLUMIC Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrich, J. M., McCarthy, C. A., and Hurst, J. K., 1981. Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. USA 78: 210–214.PubMedGoogle Scholar
  2. Baba, A., Nishiuchi, Y., Uemura, A., and Iwata, H., 1988. Mechanism of excitatory amino acid-induced accumulation of cyclic AMP in hippocampal slices: Role of extracellular chloride, J. Pharmacol. Exp. Ther. 245: 299–304.PubMedGoogle Scholar
  3. Brautigan, D. L., 1988. Molecular defects in ion channel regulation in cystic fibrosis predicted from analysis of protein phosphorylation/dephosphorylation, Int. J. Biochem. 20: 745–752.PubMedGoogle Scholar
  4. Bruun-Meyer, S., 1987. The GABA/benzodiazepine receptor—chloride ionophore complex: Nature and modulation, Prog. Neuro-Psychopharmacol. BioL Psychiat. 11: 365–387.Google Scholar
  5. Cabantchik, Z. I., and Rothstein, A., 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation, J. Membr. Biol. 15: 207–226.PubMedGoogle Scholar
  6. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of “probes,” Biochim. Biophys. Acta 515: 239–302.PubMedGoogle Scholar
  7. Chen, P.-Y., and Verkman, A. S., 1988. Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubule, Biochemistry 27: 655–660.PubMedGoogle Scholar
  8. Chen, P.-Y., Illsley, N. P., and Verkman, A. S., 1988. Renal brush-border chloride transport mechanisms characterized using a fluorescent indicator, Am. J. Physiol. 254: F114 - F120.PubMedGoogle Scholar
  9. Costa, E., and Guidotti, A., 1979. Molecular mechanisms in the receptor action of benzodiazepines, Annu. Rev. Pharmacol. Toxicol. 19: 531–545.PubMedGoogle Scholar
  10. Costa, T., Rodbard, D., and Pert, C. B., 1979. Is the benzodiazepine receptor coupled to a chloride ion channel? Nature 277: 315–317.PubMedGoogle Scholar
  11. Cotton, C. U., Stutts, M. J., Knowles, M. R., Gatzy, J. T., and Boucher, R. C., 1987. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium: An in vitro electrophysiological analysis, J. Clin. Invest. 79: 80–85.PubMedGoogle Scholar
  12. Dalmark, M., 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells, J. Gen. Physiol. 67: 223–234.PubMedGoogle Scholar
  13. de Rouffignac, C., and Elalouf, J.-M., 1988. Hormonal regulation of chloride transport in the proximal and distal nephron, Annu. Rev. Physiol. 50: 123–140.PubMedGoogle Scholar
  14. Dismukes, G. C., 1986. The metal centers of the photosynthetic oxygen-evolving complex, Photochem. Photobiol. 43: 99–115.Google Scholar
  15. Dix, J. A., Verkman, A. S., and Solomon, A. K., 1986. Binding of chloride and a disulfonic stilbene transport inhibitor to red cell band 3, J. Membr. Biol. 89: 211–223.PubMedGoogle Scholar
  16. Ehlers, M. R. W., and Kirsch, R. E., 1988. Catalysis of angiotensin I hydrolysis by human angiotensin-converting enzyme: Effect of chloride and pH, Biochemistry 27: 5538–5544.PubMedGoogle Scholar
  17. Ehlers, M. R. W., and Riordan, J. F., 1989. Angiotensin-converting enzyme: New concepts concerning its biological role, Biochemistry 28: 5311–5318.PubMedGoogle Scholar
  18. Epstein, F. H., and Silva, P., 1985. Na-K-Cl cotransport in chloride-transporting epithelia, Ann. N.Y. Acad. Sci. 456: 187–197.PubMedGoogle Scholar
  19. Foskett, J. K., and Melvin, J. E., 1989. Activation of salivary secretion: Coupling of cell volume and [Ca’]; in single cells, Science 244: 1582–1585.PubMedGoogle Scholar
  20. Frizzell, R. A., 1988. Role of absorptive and secretory processes in hydration of the airway surface, Am. Rev. Respir. Dis. 138: S3 - S6.PubMedGoogle Scholar
  21. Frizzell, R. A., Rechkemmer, G., and Shoemaker, R. L., 1986. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis, Science 233: 558–560.PubMedGoogle Scholar
  22. Frölich, 0., 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride, J. Membr. Biol. 65: 111–123.Google Scholar
  23. Furuya, W., Tarshis, T., Law, F.-Y., and Knauf, P. A., 1984. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein, J. Gen. Physiol. 83: 657–681.PubMedGoogle Scholar
  24. Gaffney, P. J., Urano, T., de Serrano, V. S., Mahmoud-Alexandroni, M., Metzger, A. R., and Castellino, F. J., 1988. Roles for chloride ion and fibrinogen in the activation of [Glu’]plasminogen in human plasma, Proc. Natl. Acad. Sci. USA 85: 3595–3598.PubMedGoogle Scholar
  25. Geck, P., and Pfeiffer, B., 1985. Na + + K + + 2C1- cotransport in animal cells-its role in volume regulation, Ann. N.Y. Acad. Sci. 456: 166–182.PubMedGoogle Scholar
  26. Gerencser, G. A., White, J. F., Gradmann, D., and Bonting, S. L., 1988. Is there a Cl - pump? Am. J. Physiol. 255: R677 - R692.PubMedGoogle Scholar
  27. Grassi, S. M., 1989. CI/HCO3 exchange in human placental brush border membrane vesicles, J. Biol. Chem. 264: 11103–11106.Google Scholar
  28. Greger, R., 1985. Ion transport mechanisms in the thick ascending limb of Henle’s loop of the mammalian nephron, Physiol. Rev. 65: 760–797.PubMedGoogle Scholar
  29. Greger, R., 1988. Chloride transport in thick ascending limb, distal convolution, and collecting duct, Annu. Rev. Physiol. 50: 111–122.PubMedGoogle Scholar
  30. Griepp, E. B., and Robbins, E. S., 1988. Epithelium, in Cell and Tissue Biology. A Textbook of Histology, 6th ed. (L. Weiss, ed.), Urban and Schwartzenberg, Baltimore, pp. 115–153.Google Scholar
  31. Guidotti, A., Corda, M. G., Wise, B. C., Vaccarino, F., and Costa, E., 1983. GABAergic synapses: Supramolecular organization and biochemical regulation, Neuropharmacology 22: 1471–1479.PubMedGoogle Scholar
  32. Gunn, R. B., and Frölich, O., 1979. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported ion at a time, J. Gen. Physiol. 74: 351–374.PubMedGoogle Scholar
  33. Gunn, R. B., and Frölich, O., 1982. Arguments in support of a single transport site on each anion transporter in human red cells, in Chloride Transport in Biological Membranes ( J. A. Zadunaisky, ed.), Academic Press, New York, pp. 33–59.Google Scholar
  34. Guyton, A. C., 1986. Textbook of Medical Physiology, 7th ed., W. B. Saunders Co., Philadelphia.Google Scholar
  35. Hardie, R. C., 1989. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse, Nature 339: 704–706.PubMedGoogle Scholar
  36. Havoundjian, H., Paul, S. M., and Skolnick, P., 1986. The permeability of y-aminobutyric acid-gated chloride channels is described by the binding of a “cage” convulsant, tutylbicyclophosphoro[35S]thionate, Proc. Natl. Acad. Sci. USA 83: 9241–9244.PubMedGoogle Scholar
  37. Hebert, S. C., and Andreoli, T. E., 1984. Control of NaC1 transport in the thick ascending limb, Am. J. Physiol. 246: F745 - F756.PubMedGoogle Scholar
  38. Higashijima, T., Ferguson, K. M., and Sternweis, P. C., 1987. Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride, J. Biol. Chem. 262: 3597–3602.PubMedGoogle Scholar
  39. Hoffmann, E. K., 1986. Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta 864: 1–31.PubMedGoogle Scholar
  40. Homann, P. H., 1985. The association of functional anions with the oxygen-evolving center in chloroplasts, Biochim. Biophys. Acta 809: 311–319.Google Scholar
  41. Homann, P. H., 1987. The relations between chloride, calcium, and polypeptide requirements of photosynthetic water oxidation, J. Bioenerg. Biomembr. 19: 105–123.PubMedGoogle Scholar
  42. Hwang, T.-C., Luo, L., Zeitlin, P. L., Greunert, D. C., Huganir, R., and Guggino, W. B., 1989. CI–channels in CF: Lack of activation by protein kinase C and cAMP-dependent protein kinase, Science 244: 1351–1353.PubMedGoogle Scholar
  43. Jennings, M. L., 1982. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes, J. Gen. Physiol. 79: 169–185.PubMedGoogle Scholar
  44. Jennings, M. L., 1985. Kinetics and mechanism of anion transport in red blood cells, Annu. Rev. Physiol. 47: 519–533.PubMedGoogle Scholar
  45. Jetten, A. M., Yankaskas, J. R., Stutts, M. J., Willumsen, N. J., and Boucher, R. C., 1989. Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia, Science 244: 1472–1475.PubMedGoogle Scholar
  46. Johnson, J. D., Pfister, V. R., and Homann, P. J., 1983. Metastable proton pools in thylakoids and their importance for the stability of photosystem-II, Biochim. Biophys. Acta 723: 256–265.Google Scholar
  47. Karniski, L. P., and Aronson, P. S., 1985. Chloride/formate exchange with formic acid recycling: A mechanism of active chloride transport across epithelial membranes, Proc. Natl. Acad. Sci. USA 82: 6362–6365.PubMedGoogle Scholar
  48. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L.-C., 1989. Identification of the cystic fibrosis gene: Genetic analysis, Science 245: 1073–1080.PubMedGoogle Scholar
  49. Kinne, R., Hannafin, J. A., and König, B., 1985. Role of the NaCI-KCI cotransport system in active chloride absorption and secretion, Ann. N.Y. Acad. Sci. 456: 198–206.PubMedGoogle Scholar
  50. Knauf, P. A., 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure, Curr. Top. Membr. Transp. 12: 249–363.Google Scholar
  51. Knauf, P. A., and Mann, N. A., 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system, J. Gen. Physiol. 83: 703–725.PubMedGoogle Scholar
  52. Knauf, P. A., and Mann, N. A., 1986. Location of the chloride self-inhibitory site of the human erythrocyte anion exchange system, Am. J. Physiol. 251: C1 - C9.PubMedGoogle Scholar
  53. Knauf, P. A., Ship, S., Breuer, W., McCulloch, L., and Rothstein, A., 1978. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminosulfonate (NAP-taurine) at the inside and outside of the membrane, J. Gen. Physiol. 72: 607–630.PubMedGoogle Scholar
  54. Knowles, M. R., Stutts, M. J., Spock, A., Fischer, N., Gatzy, T. J., and Boucher, R. C., 1983. Abnormal ion permeation through cystic fibrosis respiratory epithelium, Science 221: 1067–1070.PubMedGoogle Scholar
  55. Kopita, R. R., and Lodish, H. F., 1985. Primary structure and transmembrane orientation of the murine anion exchange protein, Nature 316: 234–238.Google Scholar
  56. Kregenow, F. M., 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media, Annu. Rev. Physiol. 43: 493–505.PubMedGoogle Scholar
  57. Krnjevic, K., 1974. Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.Google Scholar
  58. Landry, D. W., Akabas, M. H., Redhead, C., Edelman, A., Cragoe, E. J., Jr., and Al-Awqati, Q., 1989. Purification and reconstitution of chloride channels from kidney and trachea, Science 244: 1469–1472.PubMedGoogle Scholar
  59. Levitan, I. B., 1989. The basic defect in cystic fibrosis, Science 244: 1423.PubMedGoogle Scholar
  60. Levitzki, A., and Steer, M. L., 1974. The allosteric activation of mammalian a-amylase by chloride, Eur. J. Biochem. 41: 171–180.PubMedGoogle Scholar
  61. Li, M., McCann, J. D., Anderson, M. P., Clancy, J. P., Liedtke, C. M., Nairn, A. C., Greengard, P., and Welsh, M. J., 1989. Regulation of chloride channels by protein kinase C in normal and cystic fibrosis airway epithelia, Science 244: 1353–1356.PubMedGoogle Scholar
  62. Lifshitz, R., and Levitzki, A., 1976. Identity and properties of the chloride effector binding site in hog pancreatic a-amylase, Biochemistry 15: 1987–1993.PubMedGoogle Scholar
  63. Lowe, A. G., and Lambert, A., 1983. Chloride-bicarbonate exchange and related transport processes, Biochim. Biophys. Acta 694: 353–374.Google Scholar
  64. Macara, I. G., and Cantley, L. C., 1981. Mechanism of anion exchange across the red cell membrane by band 3: Interactions between stilbenedisulfonate and NAP-taurine binding sites, Biochemistry 20: 5695–5701.PubMedGoogle Scholar
  65. Marvizón, J. C. G., and Skolnick, P., 1988. Enhancement of t-[35S]butylbicyclophosphorothionate and [3H]strychnine binding by monovalent anions reveals similarities between y-aminobutyric acid-and glycine-gated chloride channels, J. Neurochem. 50: 1632–1639.PubMedGoogle Scholar
  66. McPherson, M. A., Shori, D. K., and Dormer, R. L., 1988. Defective regulation of apical membrane chloride transport and exocytosis in cystic fibrosis, Biosci. Rep. 8: 27–33.PubMedGoogle Scholar
  67. Mohler, H., and Okada, T., 1977. Benzodiazepine receptor: Demonstration in the central nervous system, Science 198: 849–851.PubMedGoogle Scholar
  68. Muallem, S., Blissard, D., Cragoe, E. J., and Sachs, G., 1988. Activation of the Na+/H+ and Cl-/HCO3 exchange by stimulation of acid secretion in the parietal cell, J. Biol. Chem. 263: 14703–14711.PubMedGoogle Scholar
  69. Nielsen, M., Honore, T., and Braestrup, C., 1985. Radiation inactivation of brain (36S)tbutylbicyclophosphorothionate binding sites reveals complicated molecular arrangements of the GABA/benzodiazepine receptor chloride channel complex, Biochem. Pharmacol. 34: 3633–3642.PubMedGoogle Scholar
  70. O’Grady, S. M., Palfrey, H. S., and Field, M., 1987. Characteristic and functions of the Na-K-Cl cotransport in epithelial cells, Am. J. Physiol. 253: C177 - C192.PubMedGoogle Scholar
  71. Olsen, R. W., 1981. GABA-benzodiazepine-barbiturate receptor interactions, J. Neurochem. 37: 1–13.PubMedGoogle Scholar
  72. Olsen, R. W., Bureau, M., Ransom, R. W., Deng, L., Dilber, A., Smith, G., Krestchatisky, M., and Tobin, A. J., 1988. The GABA receptor-chloride ion channel protein complex, Adv. Exp. Med. Biol. 236: 1–14.PubMedGoogle Scholar
  73. Ono, T.-A., Nakayama, H., Gleiter, H., Inoue, Y., and Kawamori, A., 1987. Modification of the properties of S2 state in photosynthetic O2-evolving center by replacement of chloride with other anions, Arch. Biochem. Biophys. 256: 618–624.PubMedGoogle Scholar
  74. Passow, H., 1986. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane, Rev. Physiol. Biochem. Pharmacol. 103: 61–203.PubMedGoogle Scholar
  75. Passow, H., Fasold, H., Gartner, E. M., Legrum, B., Ruffing, W., and Zaki, L, 1980. Anion transport across the red blood cell membrane and the conformation of the protein in band 3, Ann. N.Y. Acad. Sci. 341: 361–383.PubMedGoogle Scholar
  76. Peppin, G. J., and Weiss, S. J., 1986. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils, Proc. Natl. Acad. Sci. USA 83: 4322–4326.PubMedGoogle Scholar
  77. Perez, A., Blissard, D., Sachs, G., and Hersey, S. J., 1989. Evidence for a chloride conductance in secretory membrane of parietal cells, Am. J. Physiol. 256: G299 - G305.PubMedGoogle Scholar
  78. Porth, C. M., 1986. Pathophysiology (C. M. Porth, ed.), J. B. Lippincott Co., Philadelphia, pp. 411–439.Google Scholar
  79. Quinton, P. M., 1983. Chloride impermeability in cystic fibrosis, Nature 301: 421–422.PubMedGoogle Scholar
  80. Rechkemmer, G. R., 1988. The molecular biology of chloride secretion in epithelia, Am. Rev. Respir. Dis. 138: S7 - S9.PubMedGoogle Scholar
  81. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grselczak, Z., Zielenski, J., Lok, S., Playsic, N., Chou, J.-L., Drumm, M. L.,, Iannuz_zi M. C., Collins, F. S., and Tsui, L.-C., 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA, Science 245: 1066–1073.Google Scholar
  82. Robinson, S. P., and Downton, W. J. S., 1984. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves, Arch. Biochem. Biophys. 228: 197–206.PubMedGoogle Scholar
  83. Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drumm, M. I., Melmer, G., Dean, M., Rozmahel, R., Cole, J. L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J. R., Tsui, L.-C., and Collins, F. S., 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping, Science 245: 1059–1065.PubMedGoogle Scholar
  84. Roos, A., and Boron, W. F., 1981. Intracellular pH, Physiol. Rev. 61: 296–434.PubMedGoogle Scholar
  85. Sachs, G., 1986. The parietal cell as a therapeutic target, Scand. J. Gastroenterol., Suppl. 118: 1–10.Google Scholar
  86. Sachs, G., Muallem, S., and Hersey, S. J., 1988. Passive and active transport in the parietal cell, Comp. Biochem. Physiol. 90A: 727–731.Google Scholar
  87. Sandusky, P. 0., and Yocum, C. F., 1986. The chloride requirement for photosynthetic oxygen evolution: Factors affecting nucleophilic displacement of chloride from the oxygen-evolving complex, Biochim. Biophys. Acta 849: 85–93.Google Scholar
  88. Schild, L., Giebish, G., and Green, R., 1988. Chloride transport in the proximal renal tubule, Annu. Rev. Physiol. 50: 97–110.PubMedGoogle Scholar
  89. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and BarnardGoogle Scholar
  90. E. A., 1987. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature 328: 221–227.Google Scholar
  91. Schoumacher, R. A., Shoemaker, R. L., Halm, D. R., Tallant, E. A., Wallace, R. W., and Frizzel, R. A., 1987. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells, Nature 330: 752–754.PubMedGoogle Scholar
  92. Schwartz, R. D., Thomas, J. W., Kempner, E. S., Skolnick, P., and Paul, S. M., 1985a. Radiation inactivation studies of the benzodiazepine/y-aminobutyric acid/chloride ionophore complex, J. Neurochem. 45: 108–115.PubMedGoogle Scholar
  93. Schwartz, R., Skolnick, P., Seale, T., and Paul, S. M., 1986. Demonstration of GABA/ barbiturate-receptor-mediated chloride transport in rat brain synaptoneurosomes: A functional assay of GABA receptor-effector coupling, Adv. Biochem. Psychopharmacol. 41: 33–49.PubMedGoogle Scholar
  94. Shapiro, R., and Riordan, J. F., 1983. Critical lysine residue at the chloride binding site of angiotensin converting enzyme, Biochemistry 22: 5315–5321.PubMedGoogle Scholar
  95. Shapiro, R., Holmquist, B., and Riordan, J. F., 1983. Anion activation of angiotensin converting enzyme: Dependence on nature of substrate, Biochemistry 22: 3850–3857.PubMedGoogle Scholar
  96. Simchowitz, L., 1988. Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils, J. Gen. Physiol. 91: 835–860.PubMedGoogle Scholar
  97. Simchowitz, L., and Roos, A., 1985. Regulation of intracellular pH in human neutrophils, J. Gen. Physiol. 85: 443–470.PubMedGoogle Scholar
  98. Skolnick, P., and Paul, S., 1983. New concepts in the neurobiology of anxiety, J. Clin. Psychiat. 44: 12–19.Google Scholar
  99. Skolnick, P., and Paul, S., 1988. The benzodiazepine/GABA receptor chloride channel complex, ISI Atlas of Science 2: 19–22.Google Scholar
  100. Skolnick, P., Havoundjian, H., and Paul, S. M., 1987. Modulation of the benzodiazepineGABA receptor chloride ionophore complex by multiple allosteric sites: Evidence for a barbiturate “receptor,” in Clinical Pharmacology in Psychiatry (Psychopharmacology Series 3) (S. G. Dahl, L. F. Gram, S. M. Paul, and W. Z. Potter, eds.), Springer-Verlag, Berlin, pp. 29–36.Google Scholar
  101. Squires, R. F., and Braestrup, C., 1977. Benzodiazepine receptors in rat brain, Nature 266: 732–734.PubMedGoogle Scholar
  102. Steck, T. L., 1978. The band 3 protein of the human red cell membrane: A review, J. Supramolec. Struct. 8: 311–324.Google Scholar
  103. Stryer, L., 1988. Biochemistry, 3rd ed., W. H. Freeman and Co., pp. 517–540.Google Scholar
  104. Tallman, J. F., Thomas, J. W., and Gallager, D. W., 1978. GABAergic modulation of benzodiazepine binding site sensitivity, Nature 274: 383–385.PubMedGoogle Scholar
  105. Urano, T., de Serrano, V. S., Gaffney, P. J., and Castellino, F. J., 1988. Effectors of the activation of human [Glu’]plasminogen by human tissue plasminogen activator, Biochemistry 27: 6522–6528.PubMedGoogle Scholar
  106. Verkman, A. S., Dix, J. A., and Solomon, A. K., 1983. Anion transport inhibitor binding to band 3 in red blood cell membranes, J. Gen. Physiol. 81: 421–449.PubMedGoogle Scholar
  107. Verkman, A. S., Takla, R., Sefton, B., Basbaum, C., and Widdicombe, J. H., 1989. Quantitative fluorescence measurement of chloride transport mechanisms in phospholipid vesicles, Biochemistry 28: 4240–4244.PubMedGoogle Scholar
  108. Wangemann, P., Wittner, M., Di Stefano, A., Englert, H. C., Lang, H. J., Schlatter, E., and Greger, R., 1986. Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship, Pflügers Arch. Eur. J. Phys. 407 (S2): 5128 - S141.Google Scholar
  109. Weiss, S. J., 1983. Oxygen as a weapon in the phagocyte armamentarium, in Handbook of Inflammation, Vol. 4 ( P. A. Ward, ed.), Elsevier, Amsterdam, pp. 37–87.Google Scholar
  110. Weiss, S. J., Peppin, G., Ortiz, X., Ragsdale, C., and Test, S. T., 1985. Oxidative autoactivation of latent collagenase by human neutrophils, Science 227: 747–749.PubMedGoogle Scholar
  111. Welsh, M. J., 1986. An apical-membrane chloride channel in human tracheal epithelium, Science 232: 1648–1650.PubMedGoogle Scholar
  112. Welsh, M. J., and Liedtke, C. M., 1986. Chloride and potassium channels in cystic fibrosis airway epithelia, Nature 322: 467–470.PubMedGoogle Scholar
  113. Widdicombe, J. H., Welsh, M. J., and Finkbeiner, W. E., 1985. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium, Proc. Natl. Acad. Sci. USA 82: 6167–6171.PubMedGoogle Scholar
  114. Willumsen, N. J., and Boucher, R. C., 1989. Activation of an apical Cl-conductance by Cat+ ionophores in cystic fibrosis airway epithelia, Am. J. Physiol. 256: C226 - C233.PubMedGoogle Scholar
  115. Wright, E. M., and Diamond, J. M., 1977. Anion selectivity in biological systems, Physiol. Rev. 57: 109–156.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations