Biochemistry of Inorganic Fluoride

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)


The ionic radii of fluoride (F) (1.33 Å) and the hydroxide ion (1.29 Å) are comparable, and each has a primary hydration number of 5. In contrast, the ionic radii of chloride (Cl) (1.81 Å), bromide (Br) (1.97 Å), and iodide (I) (2.23 Å) are significantly higher, and these anions have lower hydration numbers (2, 2, and 1, respectively). As a result of its similarity to the hydroxide ion, F readily substitutes for hydroxide in many biochemical transformations, often with profound consequences. In addition, as a consequence of these same physicochemical properties, the biological behavior of F differs dramatically from that of the other halogens. For example, unlike Cl, F (as HF) readily enters cells by passive transport, F is the only halogen incorporated into the crystal lattice of mineralized tissue, and F does not compete with I in the thyroid gland.


Adenylate Cyclase Dental Caries Sodium Fluoride Dental Fluorosis Inorganic Pyrophosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasenden, R., and Peebles, T. C., 1974. Effects of fluoride supplementation from birth on human deciduous and permanent teeth, Arch. Oral Biol. 19: 321–326.PubMedCrossRefGoogle Scholar
  2. Baglioni, C., 1972. Heterogeneity of the small ribosomal subunit and mechanism of chain initiation in eukaryotes, Biochim. Biophys. Acta 287: 189–193.PubMedGoogle Scholar
  3. Baglioni, C., Vesco, C., and Jacobs-Lorena, M., 1969. The role of ribosomal subunits in mammalian cells, Cold Spring Harbor Symp. Quant. Biol. 34: 555–565.PubMedCrossRefGoogle Scholar
  4. Baikov, A. A., Smimova, I. N., and Volk, S. E., 1984. Membrane inorganic pyrophosphatase. “Syncatalytic” inactivation by the fluoride ion, Biochemistry (Biokhimiya) 49: 696–702.Google Scholar
  5. Bailey, K., and Webb, E. C., 1944. Purification and properties of yeast pyrophosphatase, Biochem. J. 38: 394–398.PubMedGoogle Scholar
  6. Bakuleva, N. P., Nazarova, T. I., Baykov, A. A., and Avaeva, S. M., 1981. The phosphorylation of yeast inorganic pyrophosphatase and formation of stoichiometric amounts of me-bound pyrophosphate, FEBS Lett. 124: 245–247.PubMedCrossRefGoogle Scholar
  7. Bang, S., 1978 Effects of fluoride on the chemical composition of inorganic bone structure, in Fluoride and Bone ( B. Courvoisier, A. Donath, and C. A. Baud, eds.), Hans Huber Publishers, Bern, Switzerland, pp. 56–61.Google Scholar
  8. Banks, R. E., 1986. Isolation of fluorine by Moissan: Setting the scene, J. Fluorine Chem. 33: 3–26.CrossRefGoogle Scholar
  9. Banks, R. E., and Goldwhite, H., 1966. Fluorine chemistry, in Handbook of Experimental Pharmacology, XX/1. Pharmacology of Fluorides, Part 1 ( O. Eichler, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 1–52.Google Scholar
  10. Barnes, D., 1987. Close encounters with an osteoclast, Science 236: 914–916.PubMedCrossRefGoogle Scholar
  11. Bassett, C. A. L., 1968. Biological significance of piezoelectricity, Calcif. Tissue Res. 1: 252–272.PubMedCrossRefGoogle Scholar
  12. Bawden, J. W., McLean, P., and Deaton, T. G., 1986. Fluoride uptake at various stages of rat molar development, J. Dent. Res. 65: 34–38.PubMedCrossRefGoogle Scholar
  13. Baykov, A. A., and Avaeva, S. M., 1974. Yeast inorganic pyrophosphatase: Studies on metal binding, Eur. J. Biochem. 47: 57–66.PubMedCrossRefGoogle Scholar
  14. Baylink, D. J., and Berstein, D. S., 1967. The effects of fluoride on metabolic bone disease: A histological study, Clin. Orthop. 55: 51–85.PubMedGoogle Scholar
  15. Baylink, D., Wergedal, J., Stauffer, M., and Rich, C., 1970. Effects of fluoride on bone formation, mineralization, and resorption in the rat, in Fluoride in Medicine ( T. L. Vischer, ed.), Hans Huber Publishers, Bern, Switzerland, pp. 37–69.Google Scholar
  16. Baylink, D. J., Duane, P. B., Farley, S. M., and Farley, J. R., 1983. Monofluorophosphate physiology: The effects of fluoride on bone, Caries Res. 17 (Suppl. 1): 56–76.PubMedCrossRefGoogle Scholar
  17. Berridge, M. J., 1987. Inositol triphosphate and diacylglycerol: Two interacting second messengers, Annu. Rev. Biochem. 56: 159–193.PubMedCrossRefGoogle Scholar
  18. Berridge, M. J., and Irvine, R. F., 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  19. Bigay, J., Deterre, P., Pfister, C., and Chabre, M., 1985. Fluoroaluminates activate transducinGDP by mimicking the y-phosphate of GTP in its binding state, FEBS Lett. 191: 181–185.PubMedCrossRefGoogle Scholar
  20. Bigay, J., Deterre, P., Pfister, C., and Chabre, M., 1987. Fluoride complexes of aluminum or beryllium act on G-proteins as reversibly bound analogues of y phosphate of GTP, EMBO J. 6: 2907–2913.PubMedGoogle Scholar
  21. Blackmore, P. F., Bocckino, S. B., Waynick, L. E., and Exton, J. H., 1985. Role of guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-biphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride, J. Biol. Chem. 260: 14477–14483.PubMedGoogle Scholar
  22. Boeckaert, J., Deterre, P., Pfister, C., Guillon, G., and Chabre, M., 1985. Inhibition of hormonally regulated adenylate cyclase by the ßy subunit of transducin, EMBO J. 4: 1413–1417.Google Scholar
  23. Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G., 1983. Identification of the predominant substrate for ADP-ribosylation by islet activating protein, J. Biol. Chem. 258: 2072–2075.PubMedGoogle Scholar
  24. Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G., 1984. Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, J. Biol. Chem. 259: 3560–3577.PubMedGoogle Scholar
  25. Borei, H., 1945. Inhibition of cellular oxidation by fluoride, Ark. Kim., Mineral. Geol. 20A: 1–125.Google Scholar
  26. Brandt, D. R., and Ross, E. M., 1986. Effect of Al3+ plus F− on the catecholamine-stimulated GTPase activity of purified and reconstituted Gs, Biochemistry 25: 7036–7041.PubMedCrossRefGoogle Scholar
  27. Brewer, J. M., 1981. Yeast enolase: Mechanism of activation by metal ions, CRC Crit. Rev. Biochem. 1981: 209–254.CrossRefGoogle Scholar
  28. Brewer, J. M., and Ellis, P. D., 1983. 31P-nmr studies of the effect of various metals on substrate binding to yeast enolase, J. Inorg. Biochem. 18: 71–82.Google Scholar
  29. Brewer, J. M., Carreira, K. M., Collins, K. M., Duvall, M. C., Cohen, C., and DerVartanian, D. V., 1983. Studies of activation and nonactivating metal ion binding to yeast enolase, J. Inorg. Biochem. 19: 255–267.PubMedCrossRefGoogle Scholar
  30. Bunick, F. J., and Kashket, S., 1982. Binding of fluoride by yeast enolase, Biochemistry 21: 4285–4290.PubMedCrossRefGoogle Scholar
  31. Burch, W. M., Hamner, G., and Wuthier, R. E., 1985. Phosphotyrosine phosphatase activity of alkaline phosphatase in mineralizing cartilage, Metabolism 34: 169–175.PubMedCrossRefGoogle Scholar
  32. Cimasoni, G., 1966. Inhibition of cholinesterase by fluoride in vitro, Biochem. J. 99: 133–137.PubMedGoogle Scholar
  33. Cimasoni, G., 1972. The inhibition of enolase by fluoride in vitro, Caries Res. 6: 93–102.PubMedCrossRefGoogle Scholar
  34. Cockcroft, S., and Gomperts, B. D., 1985. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature 314: 534–536.PubMedCrossRefGoogle Scholar
  35. Cockcroft, S., and Taylor, J. A., 1987. Fluoroaluminates mimic guanosine 5’[y-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes, Biochem. J. 241: 409–414.PubMedGoogle Scholar
  36. Colombo, B., Vesco, C., and Baglioni, C., 1968. Role of ribosomal subunits in protein synthesis in mammalian cells, Proc. Natl. Acad. Sci. USA 61: 651–658.PubMedCrossRefGoogle Scholar
  37. Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979. Fluoride-mediated activation of the respiratory burst in human neutrophils, J. Clin. Invest. 63: 637–747.PubMedCrossRefGoogle Scholar
  38. Dandona, P., Gill, D. S., and Khokher, M. A., 1989. Fluoride and osteoblasts (letter), Lancet 1989: 449–450.CrossRefGoogle Scholar
  39. Dreisbuch, R. H., 1980. Fluorine, hydrogen fluoride and derivatives, in Handbook of Poisoning, Lange Medical Publishers, Los Altos, California, pp. 210–213.Google Scholar
  40. Duncan, R. F., and Hershey, J. W., 1987. Initiation factor protein modifications and inhibition of protein synthesis, Mol. Cell. Biol. 7: 1293–1295.PubMedGoogle Scholar
  41. Eager. J. M„ 1901. Denti di Chiaie (chiaie teeth), Public Health Rep. 16: 2576.Google Scholar
  42. Eanes, E. D., 1982: Effect of fluoride on mineralization of teeth and bones, Proceedings of the International Fluoride Symposium, Logan, Utah, pp. 195–198.Google Scholar
  43. Eanes, E. D., and Reddi, A. H., 1979. The effect of fluoride on bone mineral apatite, Metab. Bone Dis. Relat. Res. 2: 3–10.CrossRefGoogle Scholar
  44. Ericsson, Y., 1983. Monofluorophosphate physiology: General considerations, Caries Res. 17–(Suppl. 1 ): 46–55.PubMedCrossRefGoogle Scholar
  45. Eriksen, E.F., Hodgson, S. F., and Riggs, B. L., 1988. Treatment of osteoporosis with sodium fluoride, in Osteoporosis. Etiology, Diagnosis, and Management ( B. L. Riggs and L. J. Melton, eds.), Raven Press, New York, pp. 415–432.Google Scholar
  46. Farley, J. R., Wergedal, J. E., and Baylink, D. J., 1983. Fluoride directly stimulates proliferation and alkaline phoshatase activity of bone-forming cells, Science 222: 330–332.PubMedCrossRefGoogle Scholar
  47. Farley, J. R., Tarbaux, N. M., Lau, K.-H. W., and Baylink, D. J., 1987. Monofluorophosphate is hydrolyzed by alkaline phosphatase and mimics the actions of NaF on skeletal tissues, in vitro, Calcif. Tissue Int. 40: 35–42.PubMedCrossRefGoogle Scholar
  48. Froede, H. C., and Wilson, I. B., 1985. The slow rate of inhibition of acetylcholinesterase by fluoride, Mol. Pharmacol. 27: 630–633.PubMedGoogle Scholar
  49. Fung, B. K.-K., 1983. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits, J. Biol. Chem. 258: 10495–10502.PubMedGoogle Scholar
  50. Fung, B. K.-K., and Stryer, L., 1980. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rol outer segments, Proc. Natl. Acad. Sci. USA 77: 2500–2504.CrossRefGoogle Scholar
  51. Fung, B. K.-K., Hurley, J. B., and Stryer, L., 1981. Flow of information in the light-triggered cyclic nucleotide cascase of vision, Proc. Natl. Acad. Sci. USA 78: 152–156.PubMedCrossRefGoogle Scholar
  52. Gabler, W. L., and Hunter, N., 1987. Inhibition of human neutrophil phagocytosis and intracellular killing of yeast cells by fluoride, Arch. Oral Biol. 32: 363–366.PubMedCrossRefGoogle Scholar
  53. Gabler, W. L., and Leong, P. A., 1979. Fluoride inhibition of polymorphonuclear leukocytes, J. Dent. Res. 58: 1933–1939.PubMedCrossRefGoogle Scholar
  54. Germaine, G. R., and Tellefson, L. M., 1986a. Role of the cell membrane in pH-dependent fluoride inhibition of glucose uptake by Streptococcus mutans, Antimicrob. Agents Chemother, 29: 58–61.Google Scholar
  55. Germaine, G. R., and Tellefson, L. M., 1986b. Effect of endogenous phosphoenolpyruvate on fluoride inhibition of glucose by Streptococcus mutans, Infect. Immun. 51: 119–124.PubMedGoogle Scholar
  56. Gilman, A. G., 1984a Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase, J. Clin. Invest. 73: 1–4.PubMedCrossRefGoogle Scholar
  57. Gilman, A. G., 1984b. G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  58. Gilman, A. G., 1987. G proteins: Transducers of receptor-generated signals, Annu. Rev. Biochem. 56: 615–649.PubMedCrossRefGoogle Scholar
  59. Godchaux, W., III and Atwood, K. C., IV, 1976. Structure and function of initiation complexes which accumulate during inhibition of protein synthesis by fluoride ion, J. Biol. Chem. 251: 292–301.PubMedGoogle Scholar
  60. Greenspan, C. M., and Wilson, I. B., 1970. The effect of fluoride on the reaction of acetylcholinesterase with carbamates, Mol. Pharmacol. 6: 266–272.PubMedGoogle Scholar
  61. Gron, P., 1977. Chemistry of topical fluorides, Caries Res. 11 (Suppl. 1): 172–204.PubMedCrossRefGoogle Scholar
  62. Guy, W.S., Taves, D.R. and Brey, W. S., Jr., 1976. Organic fluorocompounds in human plasma: Prevalence and characterization, in Biochemistry Involving Carbon-Fluorine Bonds (R. Filler, ed.), ACS Symposium Series 28, American Chemical Society, Washington, D. C., pp. 117–134.CrossRefGoogle Scholar
  63. Hamilton, I. R., 1977. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism, Caries Res. 11 (Suppl. 1): 262–278.PubMedCrossRefGoogle Scholar
  64. Haromy, T. P., Knight, W. B., Dunaway-Mariano, D., and Sundaralingam, M., 1982. X-ray crystallographic and nuclear magnetic resonance spectral studies of the products from yeast inorganic pyrophosphatase-Co(NH3)4 PP reaction. Investigation of the pyrophosphatase reaction mechanism, Biochemistry 21: 6950–6956.PubMedCrossRefGoogle Scholar
  65. Harper, D. S., and Loesche, W. J., 1986. Inhibition of acid production from oral bacteria by fluorapatite-derived fluoride, J. Dent. Res. 65: 30–33.PubMedCrossRefGoogle Scholar
  66. Haugen, D. A., and Suttie, J. W., 1974. Fluoride inhibition of rat liver microsomal esterases, J. Biol. Chem. 249: 2723–2731.PubMedGoogle Scholar
  67. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., and Gilman, A. G., 1987. The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins, J. Biol. Chem. 262: 752–756.PubMedGoogle Scholar
  68. Hildebrandt, J. D., Codina, J., Risinger, R., and Birnbaumer, L., 1984. Identification of a y-subunit associated with the adenyl cyclase regulatory proteins N. and N. J. Biol. Chem. 259: 2039–2042.Google Scholar
  69. Hodge, H. C., and Smith, F. A., 1981. Fluoride, Mineral Metab. 1: 439–483.Google Scholar
  70. Hodge, H. C., and Smith, F. A., 1965a. Biological properties of inorganic fluorides, in Fluorine Chemistry, Volume IV ( J. H. Simon, ed.), Academic Press, New York, London, pp. 1–375.Google Scholar
  71. Hodge, H. C., and Smith, F. A., 1965b. Effects of fluoride on bonesiand teeth, in Fluorine Chemistry, Volume IV ( J. H. Simon, ed.), Academic Press, New York, London, pp. 376–691.Google Scholar
  72. Holland, R. I., 1979a. Fluoride inhibition of DNA synthesis in cells in vitro, Acta Pharmacol. Toxicol. 45: 96–101.CrossRefGoogle Scholar
  73. Holland, R. I., 1979b. Fluoride inhibition of protein synthesis, Cell Biol. Int. Rep. 3: 701–705.PubMedCrossRefGoogle Scholar
  74. Hongslo, C. F., Hongslo, J. K., and Holland, R. I., 1980. Fluoride sensitivity of cells from different organs, Acta Pharmacol. Toxicol. 46: 73–77.CrossRefGoogle Scholar
  75. Howlett, A. C., Sternweis, P. C., Macik, B. A., Van Arsdale, P. M., and Gilman, A. G., 1979. Reconstitution of catecholamine-sensitive adenylate cyclase. Association of a regulatory component of the enzyme with membranes containing the protein and β-adrenergic receptors, J. Biol. Chem. 254: 2287–2295.PubMedGoogle Scholar
  76. Humphreys, W. G., and Macdonald, T. L., 1988. The effects of tubulin polymerization and associated guanosine triphosphate hydrolysis of aluminum ion, fluoride ion, and fluoroaluminate species, Biochem. Biophys. Res. Commun. 151: 1025–1032.PubMedCrossRefGoogle Scholar
  77. Jenkins, G. N., and Edgar, W. M., 1977. Distribution and forms of F in saliva and plaque, Caries Res. 11 (Supp1. 1): 226–242.PubMedCrossRefGoogle Scholar
  78. Jowsey, J., and Kelley, P. J., 1968. Effect of fluoride treatment in a patient with osteoporosis, Mayo Clinic Proc. 43: 435–443.Google Scholar
  79. Jowsey, J., Riggs, B. L., Kelly, P. J., and Hoffman, D. L., 1972. Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis, Amer. J. Med. 53: 43–59.PubMedCrossRefGoogle Scholar
  80. Kanaho, Y., Moss, J., and Vaughan, M., 1985. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum, J. Biol. Chem. 260: 11493–11497.PubMedGoogle Scholar
  81. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G., 1984a. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and functions of the purified protein, J. Biol. Chem. 259: 3568–3577.PubMedGoogle Scholar
  82. Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984b. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition, J. Biol. Chem. 259: 3578–3585.PubMedGoogle Scholar
  83. Kienast, J., Arnout, J., Pliegler, G., Deckmyn, H., Hoet, B., and Vermylen, J., 1987. Sodium fluoride mimics effects of both agonists and antagonists on intact human platelets by simultaneous modulation of phospholipase C and adenylate cyclase activity, Blood 69: 859–866.PubMedGoogle Scholar
  84. Kilian, M., Larsen, M. J., Fejerskov, O., and Thylstrup, A., 1979. Effects of fluoride on the initial colonization of teeth in vivo, Caries Res. 13: 319–329.PubMedCrossRefGoogle Scholar
  85. Kleiner, H. S., and Allmann, D. W., 1982. The effects of fluoridated water on rat urine and tissue cAMP levels, Arch. Oral Biol. 27: 107–112.PubMedCrossRefGoogle Scholar
  86. Knight, W. B., Fitts, S. W., and Dunaway-Mariano, D., 1981. Investigation of the catalytic mechanism of yeast inorganic pyrophosphate, Biochemistry 20: 4079–4086.PubMedCrossRefGoogle Scholar
  87. Knight, W. B., Ting, S.-J., Chuang, S., Dunaway-Mariano, D., Harmony, T., and Sundaralingam, M., 1983. Yeast inorganic pyrophosphatase substrate recognition, Arch. Biochem. Biophys. 227: 302–309.PubMedCrossRefGoogle Scholar
  88. Kuhn, H., 1980. Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes, Nature 283: 587–589.PubMedCrossRefGoogle Scholar
  89. Kuza, M., and Kazimierczak, W, 1982. On the mechanism of histamine release from sodium fluoride-activated mouse mast cells, Agents Actions 12: 289–294.PubMedCrossRefGoogle Scholar
  90. Lange, A. J., Anion, W. J., Burchell, A., and Burchell, B., 1986. Aluminum ions are required for stabilization and inhibition of hepatic microsomal glucose-6-phosphatase by sodium fluoride, J. Biol. Chem. 261: 101–107.PubMedGoogle Scholar
  91. Lefkowitz, R. J., Caron, M. G., and Stiles, G. L., 1984. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors, N. Engl. J. Med. 310: 1570–1579.PubMedCrossRefGoogle Scholar
  92. Lin, I., Knight, W. B., Hsueh, A., and Dunaway-Mariano, D., 1986. Investigation of the regiospecificity and stereospecificity of proton transfer in the yeast inorganic pyrophosphatase catalyzed reaction, Biochemistry 25: 4688–4692.PubMedCrossRefGoogle Scholar
  93. Litosch, I., and Fain, J. N., 1986. Regulation of phosphoinositide breakdown by guanine nucleotides, Life Sci. 39: 187–194.PubMedCrossRefGoogle Scholar
  94. Lochrie, M. A., and Simon, M. I., 1988. G Protein multiplicity in eukaryotic signal transduction systems, Biochemistry 27: 4957–4965.PubMedCrossRefGoogle Scholar
  95. Lundy, M. W., Farley, J. R., and Baylink, D. J., 1986. Characterization of a rapidly responding animal model for fluoride-stimulated bone formation, Bone 7: 289–293.PubMedCrossRefGoogle Scholar
  96. Macdonald, T. L., and Martin, R. B., 1988. Aluminum ion in biological systems, Trends Biochem. Sci. 13: 15–19.PubMedCrossRefGoogle Scholar
  97. Marks, P. A., Burka, E. R., Conconi, F. M., Perl, W., and Rifkind, R. A., 1965. Polyribosome dissociation and formation in intact reticulocytes with conservation of messenger ribonucleic acid, Proc. Natl. Acad. Sci. USA 53: 1437–1443.PubMedCrossRefGoogle Scholar
  98. Matthews, 1970. Changes in cell function due to inorganic fluoride, in Handbook of Experimental Pharmacology, XX/2. Pharmacology of Fluorides, Part 2 ( A. F. Smith, ed.), Springer-Verlag, Berlin, pp. 98–143.Google Scholar
  99. Maurer, P. J., and Nowak, T., 1981. Fluoride inhibition of yeast enolase. 1. Formation of the ligand complexes, Biochemistry 20: 6894–6900.PubMedCrossRefGoogle Scholar
  100. McGrath, J. P., Capon, D. J., Goeddel, D. V., and Levinson, A. D., 1984. Comparative biochemical properties of normal and activated human ras p21 protein, Nature 310: 644–649.PubMedCrossRefGoogle Scholar
  101. Mclvor, M. E., Cummings, C. C., Mower, M. M., Baltazar, R. F., Wenk, R. E., Lustgarten, J. A., and Salomon, J., 1985. The manipulation of postassium efflux during fluoride intoxication: Implications for therapy, Toxicology 37: 233–239.CrossRefGoogle Scholar
  102. McPhail, L. C., Shirley, P. S., Clayton, C. C., and Snyderman, R., 1985. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor, J.Clin.invest. 75: 1735–1739.PubMedCrossRefGoogle Scholar
  103. Messer, H. H. 1984. Flunrine, in Biochemistry of the Essential Ultratrace Elements ( E. Frieden, ed.), Plenum Press, New York, pp. 55–87.CrossRefGoogle Scholar
  104. Miki, N., Keims, J. J., Marcus, F. R., Freeman, J., and Bitensky, M. W., 1973. Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light, Proc. Natl. Acad. Sci. USA 70: 3820–3824.PubMedCrossRefGoogle Scholar
  105. Miller, J. L., Hubbard, C. M., Litman, B. J., and Macdonald, T. L., 1989. Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion, J. Biol. Chem. 264: 243–250.PubMedGoogle Scholar
  106. Moreno, E. C., Kresak, M., and Zahradnik, R. T., 1977. Physicochemical aspects of fluorideapatite systems relevant to the study of caries, Caries Res. 11 (Suppl. 1): 142–171.PubMedCrossRefGoogle Scholar
  107. Mundy, G. R., 1989. Identifying mechanisms for increasing bone mass, J. NIH Res. 1: 65–68.Google Scholar
  108. Neuman, W. F., DiStefano, V., and Mulryan, B. J., 1951. The surface chemistry of bone. III. Observations on the role of phosphatase. J. Biol. Chem. 17: 286–293.Google Scholar
  109. Newbold, R., 1984. Mutant ras proteins and cell transformation, Nature 310: 628–629.PubMedCrossRefGoogle Scholar
  110. Northup, J. K., Sternweis, P. C., and Gilman, A. G., 1983a. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000-Da (β) subunit, J. Biol. Chem. 258: 11361–11368.PubMedGoogle Scholar
  111. Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G., 1983b. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-Dalton (α) subunit, J. Biol. Chem. 258: 11369–11376.PubMedGoogle Scholar
  112. Nowak, T., and Maurer, P. J., 1981. Fluoride inhibition of enolase 2. Structural and kinetic properties of the ligand complexes determined by nuclear relaxation rate studies, Biochemistry 20: 6901–6911.PubMedCrossRefGoogle Scholar
  113. Nowak, T., Mildvan, A. S., and Kenyon, G. L., 1973. Nuclear relaxation and kinetic studies of the role of Mn2+ in the mechanism of enolase, Biochemistry 12: 1690–1701.PubMedCrossRefGoogle Scholar
  114. Page, J. D., and Wilson, I. B., 1983. The inhibition of acetylcholinesterase by arsenite and fluoride, Arch. Biochem. Biophys. 226: 492–497.PubMedCrossRefGoogle Scholar
  115. Page, J. D., Wilson, I. B., and Silman, I., 1985. Butyrylcholinesterase: Inhibition by arsenite, fluoride, and other ligands, cooperativity in binding, Mol. Pharmacol. 27: 437–443.PubMedGoogle Scholar
  116. Pain, V. M., 1986. Inhibition of protein synthesis in mammalian cells, Biochem. J. 235: 625–637.PubMedGoogle Scholar
  117. Pak, C. Y. C., Sakhaee, K., Zerwekh, J. E., Parcel, C., Peterson, R., and Johnson, K., 1989. Safe and effective treatment of osteoporosis with intermittent slow release sodium fluoride: Augmentation of vertebral bone mass and inhibition of fractures, J. Clin. Invest. Metab. 68: 150–159.Google Scholar
  118. Peck, W. A., and Woods, W. L., 1988. The cells of bone, in Osteoporosis: Etiology, Diagnosis, and Management ( B. L. Riggs and J. L. Melton, eds.), Raven Press, New York, pp. 1–44.Google Scholar
  119. Peters, R. A., Shorthouse, M., and Murray, L. R., 1964. Enolase and fluorophosphate, Nature 202: 1331.PubMedCrossRefGoogle Scholar
  120. Poll, C., Kyrle, P., and Westwick, J., 1986. Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation, Biochem. Biophys. Res. Commun. 136: 381–389.PubMedCrossRefGoogle Scholar
  121. Prince, R. C., and Gunson, D. E., 1987. Superoxide production by neutrophile, Trends Biochem. Sci. 12: 86–87.CrossRefGoogle Scholar
  122. Reinbold, W.-D., Genant, H. K., Reiser, U. J., Harris, S. T., and Ettinger, B., 1986. Bone mineral content in early-postmenopausal and postmenopausal women: Comparison of measurement method, Radiology 160: 469–478.PubMedGoogle Scholar
  123. Revell, P. A., 1986. Pathology of Bone, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  124. Rich, C., and Ensinek, J., 1961. Effect of sodium fluoride on calcium metabolism of human beings, Nature 191: 184–185.PubMedCrossRefGoogle Scholar
  125. Rich, C., Ensinck, J., and Ivanovich, P., 1964. The effects of sodium fluoride on calcium metabolism of subjects with metabolic bone disease, J. Clin. Invest. 43: 545–556.PubMedCrossRefGoogle Scholar
  126. Riggs, B. L., 1984. Treatment of osteoporosis with sodium fluoride: An appraisal, in Bone and Mineral Research, Annual 2 ( W. A. Peck, ed.), Elsevier, Amsterdam, pp. 366–393.Google Scholar
  127. Riggs, B. L., and Melton, L. J., III (eds.), 1988. Osteoporosis: Etiology, Diagnosis, and Management, Raven Press, New York.Google Scholar
  128. Riggs, B. L., Seeman, E., Hodgson, S. F., Taves, D. R., and O’Fallon, W. M., 1982. Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis: Comparison with conventional therapy, N. Engl. J. Med. 306: 446–450.PubMedCrossRefGoogle Scholar
  129. Robinson, J. D., 1975. Functionally distinct classes of K+ sites on the (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 384: 250–264.PubMedGoogle Scholar
  130. Robinson, J. D., Davis, R. L., and Steinberg, M., 1986. Fluoride and beryllium interact with the (Na+ K)-dependent ATPase as analogs of phosphate, J. Bioenerg. Biomembr. 18: 521–531.PubMedCrossRefGoogle Scholar
  131. Robinson, R., 1923. The possible significance of hexose phosphoric esters in ossification, Biochem. J. 17: 286–293.Google Scholar
  132. Rodbell, M., 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17–22.PubMedCrossRefGoogle Scholar
  133. Schelling, D. L., and Cohen, P., 1987. MgATP-Dependent inactivation of rat liver aminoacyltRNA synthetases is explained by pyrophosphate generation and not by phosphorylation, Biochem. Soc. Proc. 15: 271–272.Google Scholar
  134. Skorecki, K. L., Verkman, A. S., Jung, C. Y., and Ausiello, D. A., 1986. Evidence for vasopressin activation of adenylate cyclase by subunit dissociation, Am. J. Physiol. 250: C103 - C123.PubMedGoogle Scholar
  135. Smirnova, I. N., and Baikov, A. A., 1983. Two-step mechanism of inhibition of inorganic pyrophosphatase by fluoride, Biochemistry (Biokhimiya) 48: 1414–1423.Google Scholar
  136. Smith, F. A.,1966. Metabolism of inorganic fluoride, in Handbook of Experimental Pharmacology, XXII. Pharmacology ofFriorides, Part I (O. Eichler, A. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 53–140.Google Scholar
  137. Spencer, S. G., and Brewer, J. G., 1982. Substrate-dependent inhibition of yeast enolase by fluoride, Biochem. Biophys. Res. Commun. 106: 553–558.PubMedCrossRefGoogle Scholar
  138. Springs, B., Welsh, K. M., and Cooperman, B. S., 1981. Thermodynamics, kinetics, and mechanism in yeast inorganic pyrophosphatase catalysis of inorganic pyrophosphate: Inorganic phosphate equilibration, Biochemistry 20: 6384–6391.PubMedCrossRefGoogle Scholar
  139. Stein, P. J., Halliday, K. R., and Rasenick, M. M., 1985. Photoreceptor protein mediates fluoride activation of phosphodiesterase, J. Biol. Chem. 260: 9081–9084.PubMedGoogle Scholar
  140. Sternweis, P. C., and Gilman, A. G., 1982. Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79: 4888–4891.PubMedCrossRefGoogle Scholar
  141. Stiles, G. L., Caron, M. C., and Lefkowitz, R. J., 1984. β-Adrenergic receptors: Biochemical mechanisms of physiological regulation, Physiol. Rev. 64: 661–742.Google Scholar
  142. Strnad, C. F., and Wong, K., 1985. Calcium mobilization in fluoride activated human neutrophils, Biochem. Biophys. Res. Commun. 133: 161–167.PubMedCrossRefGoogle Scholar
  143. Susheela, A., K., and Singh, M., 1982. Adenyl cyclase activity following fluoride ingestion, Toxicol. Lett. 10: 209–212.PubMedCrossRefGoogle Scholar
  144. Sutherland, E. W., and Rall, T. W., 1958. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem. 232: 1077–1091.PubMedGoogle Scholar
  145. Swarup, G., Cohen, S., and Garbers, D. L., 1981. Selective dephosphorylation of proteins containing phosphotyrosine by alkaline phosphatases, J. Biol. Chem. 256: 8197–8201.PubMedGoogle Scholar
  146. ten Cate, J. M., and Arends, J., 1977. Remineralization of artificial enamel lesions in vitro, Caries Res. 11: 277–286.PubMedCrossRefGoogle Scholar
  147. Vaughan, J., 1981. The Physiology of Bone, Clarendon Press, Oxford.Google Scholar
  148. Verkman, A. S., Ausiello, D. A., Jung, C. Y., and Skorecki, K. L., 1986. Mechanisms of non-hormonal activation of adenylate cyclase based on target analysis, Biochemistry 25: 4566–4572.PubMedCrossRefGoogle Scholar
  149. Vittur, F., and deBernard, B., 1973. Alkaline phosphatase activity associated to a calcium-binding glycoprotein from calf scapula cartilage, FEBS Lett. 38: 87–90.PubMedCrossRefGoogle Scholar
  150. Wang, T., and Himoe, A., 1973. Kinetics of the rabbit muscle enolase-catalyzed dehydration of 2-phosphoglycerate: Fluoride and phosphate inhibition, J. Biol. Chem. 249: 3895–3902.Google Scholar
  151. Warburg, O., and Christian, W., 1942. Isolierung and Kristallisation des Gärungsferments Enolase, Biochem. Z. 310: 384–421.Google Scholar
  152. Weatherell, J. A., 1969. Fluoride and the skeletal and dental tissues, in Handbook of Experimental Pharmacology XXII. Pharmacology of Fluorides, Part 1 ( O. Farah, H. Herken, and A. D. Welch, eds.), Springer-Verlag, Berlin, pp. 141–172.Google Scholar
  153. Whyte, M. P., and Vrabel, L. A., 1987. Infantile hypophosphatasia fibroblasts proliferate normally in culture: Evidence against a role for alkaline phosphatase (tissue nonspecific isoenzyme) in the regulation of cell growth and differentiation, Calcif. Tissue Int. 40: 1–7.PubMedCrossRefGoogle Scholar
  154. Wilson, I. B., 1985. Cholinesterase: Two surprising inhibitors, in Molecular Basis of Nerve Activity ( J. P. Changeux, ed.), Walter de Gruyter & Co., Berlin, pp. 667–678.Google Scholar
  155. Wiseman, A., 1970. Effect of inorganic fluoride on enzymes, in Handbook of Experimental Pharmacology XX/2. Pharmacology of Fluorides, Part 2 ( F. A. Smith, ed.), Springer-Verlag, Berlin, pp. 48–97.Google Scholar
  156. Wuthier, R. E., and Register, T. C., 1984. Role of alkaline phosphatase, a polyfunctional enzyme, in mineralizing tissues, in The Chemistry and Biology of Mineralized Tissues (W. T. Butler, ed.), Proceedings of the Second International Conference on the Chemistry and Biology of Mineralized Tissues, Gulf Shores, Alabama, September 9–14, 1984, Ebsco Media, Birmingham.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations