Advertisement

The Halogens: Discovery, Occurrence, and Biochemistry of the Free Elements

  • Kenneth L. Kirk
Part of the Biochemistry of the Elements book series (BOTE, volume 9A+B)

Abstract

The halogens—fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At)—make up group 17 (VIIA) of the elements. Because of their propensity to form salts [the standard potentials (E 0, volts) for the oxidation of halides (2X→X2 + 2e ) are −3.06, −1.36, −1.07, and −0.54 for fluorine, chlorine, bromine, and iodine, respectively], Berzelius designated these elements as “halogens” (Greek hals, sea salt; gennao, I beget). The halogens make up a particularly well defined family, having the most regular gradation of physical properties of all the families of elements. Thus, an almost perfect doubling of atomic weights on going from one halogen to the next down the periodic table is accompanied by an increase in specific gravity, melting points, and boiling points, and a decrease in water solubility and chemical reactivity (Table 1–1) (Stokinger, 1981). The concentrations of the halogens found in seawater and in the lithosphere are given in Table 1–2.

Keywords

Humic Acid Lewis Publisher Chlorine Dioxide Water Chlorination Uranium Hexafluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aken, E. W., and Hoff, J. C., 1985. Microbiological risks associated with changes in drinking water disinfection practices, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 ( R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 99–110.Google Scholar
  2. Alexandrov, D. D., 1983. Bromine and compounds, in Encyclopaedia of Occupational Health and Safety, Vol. 1, 3rd ed. ( L. Parmeggiani, ed.), International Labor Organization, Geneva, pp. 326–329.Google Scholar
  3. Banks, R. E., 1986. Isolation of fluorine by Moissan: Setting the scene, J. Fluorine Chem. 33: 3–26.CrossRefGoogle Scholar
  4. Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C., 1974. The occurrence of organohalides in chlorinated drinking water, J. Am. Water Works Assoc. 66: 703–706.Google Scholar
  5. Bull, R. J., and McCabe, L. J., 1985. Risk assessment issues in evaluating the health effects of alternate means of drinking water disinfection, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 (R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 111–130.Google Scholar
  6. Bull, R. J., and Robinson, M., 1985. Carcinogenic activity of haloacetonitrile and haloacetone derivatives in the mouse skin and lung, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 (R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 221–227.Google Scholar
  7. Bull, R. J., Robinson, M., Meier, J. R., and Stober, J., 1982. Use of biological assay systems to assess the relative carcinogenic hazards of disinfection by-products, Environ. Health Perspect. 46: 215–227.PubMedCrossRefGoogle Scholar
  8. Chandralekha, P. S., Khade, M. V., and Srinivasan, M., 1988. Respiratory cytopathology in chlorine gas toxicity: A study of 28 subjects, Diagnostic Cytopathol. 4: 28–32.CrossRefGoogle Scholar
  9. Cheh, A. M., Skochdopole, J., Koski, P., and Cole, L., 1980. Nonvolatile mutagens in drinking water: Production by chlorination and destruction by sulfite, Science 207: 90–92.PubMedCrossRefGoogle Scholar
  10. Conradi Fernandez, L. C., and Inclan Cuesta, M. I., 1983. Chlorine and inorganic compounds, in Encyclopaedia of Occupational Health and Safety, Vol. 1, 3rd ed. ( L. Parmeggiani, ed.), International Labor Office, Geneva, pp. 454–459.Google Scholar
  11. Crump, K. S., and Guess, H. A., 1982. Drinking water and cancer, Annu. Rev. Public Health 3: 339–357.PubMedCrossRefGoogle Scholar
  12. Davis, W. P., and Roberts, M. H., Jr., 1985. Water chlorination: Crossroad of uncertainties and decisions, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 (R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 3–4.Google Scholar
  13. de Leer, E. W. B., Damste, J. S. S., and de Galan, L., 1985. Formation of aryl-chlorinated aromatic acids and precursors for chloroform in chlorination of humic acid, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 (R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 843–857.Google Scholar
  14. Ellis, J. F., and May, G. F., 1986. Modern fluorine generation, J. Fluorine Chem. 33: 133–146.CrossRefGoogle Scholar
  15. Flahaut, J., and Viel, C., 1986. The life and scientific work of Henri Moissan, J. Fluorine Chem. 33: 27–42.CrossRefGoogle Scholar
  16. Fukayama, M. Y., Tan, H., Wheeler, W. B., and Wei, C.-I., 1986. Reactions of aqueous chlorine and chlorine dioxide with model food compounds, Environ. Health Perspect. 69: 267–274.PubMedCrossRefGoogle Scholar
  17. Goldwhite, H., 1986. The Manhattan project, J. Fluorine Chem. 33: 109–131.CrossRefGoogle Scholar
  18. Gottardi, W., 1983. Iodine and iodine compounds, in Disinfection, Sterilization, and Preservation 3rd ed. ( S. S. Block, ed.), Lea and Febiger, Philadelphia, pp. 183–196.Google Scholar
  19. Gould, E. S., 1955. Inorganic Reaction and Structure, Holt, Rinehart, and Winston, New York, pp. 205–227.Google Scholar
  20. Greenwood, N. N., and Earnshaw, A., 1984. Chemistry of the Elements, Pergamon Press, Oxford, pp. 921–1041.Google Scholar
  21. Harvey, S. C., 1985. Antiseptics and disinfectants; fungicides; ectoparasiticides, in The Pharmacological Basis of Therapeutics, 7th ed. ( A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, eds.), Macmillan, New York, pp. 959–979.Google Scholar
  22. Klonne, D. R., Ulrich, C. E., Riley, M. G., Hamm, T. E., Jr., Morgan, K. T., and Barrow, C. S., 1987. One-year inhalation study of chlorine in rhesus monkeys (Macaca mulatta), Fundam. Appl. Toxicol. 9: 557–572.PubMedCrossRefGoogle Scholar
  23. Kronberg, L., and Christman, R. F., 1989. Chemistry of mutagenic by-products of water chlorination, Sci. Total Environ. 81 /82: 219–230.PubMedCrossRefGoogle Scholar
  24. Kurokawa, Y., Hayashi, Y., Maekawa, A., Takahashi, M., Kokubo, T., and Odashima, S., 1983. Carcinogenicity of potassium bromate administered orally to F344 rats, J. Natl. Cancer Inst. 71: 965–971.PubMedGoogle Scholar
  25. Lichtenberg, R., Zeller, W. P., Gatson, R., and Hurley, R. M., 1989. Bromate poisoning, J. Pediat. 114: 891–894.PubMedCrossRefGoogle Scholar
  26. Loper, J. C., 1980. Mutagenic effects of organic compounds in drinking water, Mutat. Res. 76: 241–268.PubMedGoogle Scholar
  27. Meier, J. R., 1988. Genotoxic activity of organic chemicals in drinking water, Mutat. Res. 196: 211–245.PubMedGoogle Scholar
  28. Meier, J. R., Lingg, R. D., and Bull, R. J., 1983. Formation of mutagens following chlorination of humic acid. A model for mutagen formation during drinking water treatment, Mutat. Res. 118: 25–41.PubMedCrossRefGoogle Scholar
  29. Meier, J. R., Knohl, R. B., Coleman, W. E., Ringhand, H. P., Munch, J. W., Kaylor, W. H., Streicher, R. P., and Kopfler, F. C., 1987. Studies on the potent bacterial mutagen, 3chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: Aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic acid solutions, Mutat. Res. 189: 363–373.PubMedCrossRefGoogle Scholar
  30. Meshri, D. T., 1986. The modern inorganic fluorochemical industry, J. Fluorine Chem. 33: 195–226.CrossRefGoogle Scholar
  31. Rook, J. J., 1974. Formation of haloforms during chlorination of natural waters, Water Treat. Exam. 23: 234–243.Google Scholar
  32. Schenck, H.-U., Simak, P., and Haedicke, E., 1979. The structure of polyvinylpyrrolidoneiodine (povidone-iodine), J. Pharm. Sci. 68: 1505–1509.PubMedCrossRefGoogle Scholar
  33. Scully, F. E., Jr., Kravitz, R., Howell, G. D., Speed, M. A., and Arber, R. P., 1985. Contribution of proteins to the formation of trihalomethanes on chlorination of natural waters, in Water Chlorination. Chemistry, Environmental Impact and Health Effects, Vol. 5 (R. L. Jolley, R. J. Bull, W. P. Davis, S. Katz, M. H. Roberts, Jr., and V. A. Jacobs, eds.), Lewis Publishers, Chelsea, Michigan, pp. 807–820.Google Scholar
  34. Stokinger, H. E., 1981. The halogens and the nonmetals boron and silicon, in Patty’s Industrial Hygiene and Toxicology, Vol. 2B, 3rd ed. ( G. D. Clayton and F. E. Clayton, eds.), Wiley, New York, pp. 2937–2965.Google Scholar
  35. Weiss, S. J., Test, S. T., Eckmann, C. M., Roos, D., Regiani, S., 1986. Brominating oxidants generated by human eosinophils, Science 234: 200–203.PubMedCrossRefGoogle Scholar
  36. Zamora, J. L., 1986. Chemical and microbiological characteristics and toxicity of povidone-iodine solutions, Am. J. Surg. 151: 400–406.PubMedCrossRefGoogle Scholar
  37. Zierler, S., Feingold, L., Danley, R. A., and Craun, G., 1988. Bladder cancer in Massachusetts related to chlorinated and chloraminated drinking water: A case-control study, Arch. Environ. Health 43: 195–200.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth L. Kirk
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations