Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 38))

  • 89 Accesses

Abstract

Drosophila melanogaster was the principal organism used for the development of diploid transmission genetics at the beginning of the century and more recently has been the subject of pivotal studies on eucaryote gene regulation, development and behavior. D. melanogaster is potentially valuable for in situ biomonitoring because it is convenient to test different life stages, it can be used for a multi-faceted analysis of environmental genotoxins and a rapidly expanding base of information on its molecular genetics facilitates the development of new methods for bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, S.K., Goswami, V. and Kesavan, P.C., 1979, Mutagenicity of inhaled diethyl sulfate vapour in Drosophila melanogaster and its implications for the utility of the system for screening air pollutants, Mut. Res. 66: 195–198.

    Article  CAS  Google Scholar 

  • Abrahamson, S. and Lewis, E.B., 1971, The detection of mutations in Drosophila melanogaster, In: “Chemical Mutagens, Vol. 2,” A. Hollaender (ed.), Plenum Press, N.Y.

    Google Scholar 

  • Borkovec, A.B., 1973, Insect chemosterilants as mutagens, In: “Chemical Mutagens, Vol. 3,” A. Hollaender (ed.), Plenum Press, N.Y.

    Google Scholar 

  • Green, M.M., Todo, T., Ryo, N. and Fujikawa, K., 1986, Genetic-molecular basis for a simple Drosophila melanogaster somatic system that detects environmental mutagens, P.N.A.S. 83: 6667–6671.

    CAS  Google Scholar 

  • Harshman, L.G., Ottea, J.A. and Hammock, B.D., Environment-dependent expression of detoxication enzyme activity in a Drosophila melanogaster selection experiment, Evolution submitted manuscript.

    Google Scholar 

  • Harshman, L.G., Green, M.M., MacKay, W., Bewley, G. and Edlin, G., Relative survival of catalase deficient genotypes on irradiated Drosophila food, Drosophila Information Service, submitted manuscript.

    Google Scholar 

  • Hayes, W.J., 1968, Toxicological aspects of chemosterilants, In: “Principles of Insect Chemosterilization,” G.C. Labrecque and C.N. Smith (eds.), Appleton-Century-Crafts, New York.

    Google Scholar 

  • Jones, P.B.C., Galeazzi, D.R., Fisher, J.M. and Whitlock, J.P., 1985, Control of cytochrome P1–450 gene expression by dioxin, Science 227:1499–1502.

    Google Scholar 

  • Pereira, M.A., 1983, International symposium on tumor production, Envir. Health Perspect. 50:3–370.

    Google Scholar 

  • Roberts, D.B., 1986, Basic Drosophila care and techniques, In: “Drosophila, A Practical Approach,” D.B. Roberts (ed.), IRL Press, Washington D.C.

    Google Scholar 

  • Sankaranarayanan, K., 1979, The role of non-disjunction in aneuploidy in man: An overview, Mut. Res. 61: 1–28.

    Google Scholar 

  • Shakarnis, V.F., 1969, Induction of X chromosome non-disjunction and recessive sex-linked mutations in females of Drosophila melanogaster by 1,2-dichloroethane, Sov. Genet 5: 1666–1671.

    Google Scholar 

  • Valencia, R., Abrahamson, S., Lee, W.R., Von Halle, E.S., Woodruff, R.C., Wurgler, F.E. and Simmering, S., 1984, Chromosome mutation tests for mutagenesis in Drosophila melanogaster, Mut. Res. 134: 61–88.

    Google Scholar 

  • Verburgt, F.G. and Vogel, E., 1977, Vinyl chloride mutagenesis in Drosophila melanogaster, Mut. Res. 48: 327–336.

    Google Scholar 

  • Vogel, E. and Sobels, F.N., 1976, The function of Drosophila in genetic toxicology testing, In:“Chemical Mutagens, Vol. 4,” A. Hollaender (ed.), Plenum Press, N.Y.

    Google Scholar 

  • Zimmering, S. and Kammermeyer, K.L., 1983, Comparison of excision repair-deficient mei-9 and mus 201 females in the test for paternal sex chromosome loss in Drosophila with procarbazine and diethylnitrosamine (DEN), Environ. Mutagen. 5:235–237.

    Google Scholar 

  • Zimmering, S., Mason, J.M. and Osgood, C., 1986, Current status of aneuploidy testing in Drosophila, Mut. Res. 167: 71–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Harshman, L.G., Hammock, B.D. (1990). The Use of Drosophila Melanogaster for In Situ Biomonitoring. In: Sandhu, S.S., Lower, W.R., de Serres, F.J., Suk, W.A., Tice, R.R. (eds) In Situ Evaluation of Biological Hazards of Environmental Pollutants. Environmental Science Research, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5808-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5808-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5810-7

  • Online ISBN: 978-1-4684-5808-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics