G-Proteins and Phospholipase Activation in Endothelial Cells

  • Mary E. Gerritsen
  • Robert J. Mannix
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 275)


ATP stimulates arachidonic acid release and prostaglandin biosynthesis (most likely via phospholipase A2 (PLA2) activation) and phospholipase C (PLC) activation in cultured rabbit coronary microvessel endothelial cells. Pertussis toxin pretreatment inhibits ATP stimulated prostaglandin release, but not ATP stimulated phosphatidylinositol turnover. In contrast, activation of G-proteins with GTPτS or A1F4- stimulates both prostaglandin synthesis and PLC. These observations suggest that PLC activation by ATP involves a G-protein(s) that is not ADP-ribosylated by pertussis toxin and further, that ATP activation of prostaglandin biosynthesis appears to involve a different, pertussis toxin sensitive, G-protein.


Pertussis Toxin Inositol Phosphate Prostaglandin Biosynthesis Prostaglandin Release Bovine Pulmonary Artery Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Gilman. G proteins: transducers of receptor-generated signals. Ann. Rev. Biochem. 56: 615–649, 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    H.R. Bowine and L. Stryer. G proteins: a family of signal transducers. Ann. Rev. Cell. Biol. 2: 391–419, 1986.CrossRefGoogle Scholar
  3. 3.
    M.E. Gerritsen and C. D. Cheli. Arachidonic acid and prostaglandin endoperoxide metabolism in isolated rabbit coronary microvessels and isolated cultivated coronary microvessel endothelial cells. J. Clin. Inv. 72: 1658–1671, 1983.CrossRefGoogle Scholar
  4. 4.
    M.E. Gerritsen. Eicosanoid production by the coronary microvascular endothelium. Fed. Proc. 46: 47–53, 1987.PubMedGoogle Scholar
  5. 5.
    M.E. Gerritsen, D.M. Nganele and A.M. Rodrigues. Calcium ionophore (A23187) and arachidonic acid stimulated prostaglandin release from microvascular endothelial cells: effects of calcium antagonists and calmodulin inhibitors. J. Pharm. Exp. Ther. 240: 837–846, 1987.Google Scholar
  6. 6.
    I.R. Batty, S.R. Nahorski, and R.F. Irvine, Rapid formation of inositol 1,3,4,5 tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232:211–215, 1985PubMedCentralPubMedGoogle Scholar
  7. 7.
    C.K. Derian and M.A. Moskowitz. Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. J. Biol. Chem. 261: 3831–3837Google Scholar
  8. 8.
    G.M. Burgess, J.S. McKinney, A.Fabiato, B.A. Leslie, and J.W. Putney. Calcium pools in saponin-permeabilized guinea pig hepatocytes. J. Biol. Chem. 258: 15336–15345, 1983.PubMedGoogle Scholar
  9. 9.
    M.E. Gerritsen, C.A.Perry, T. Moatter, E.J. Cragoe, and M.S. Medow. Agonist specific role for Na+-H+ antiport in prostaglandin release from microvessel endothelium. Am. J. Physiol. 256: C831–C839., 1989PubMedGoogle Scholar
  10. 10.
    L. Needham, N.J. Cusack, J.D. Pearson and J.L. Gordon. characteristics of the P2 purinoceptor that mediates prostacyclin production by pig aortic endothelial cells. Eur. J. Pharmacol. 134: 199–209, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    T.A. Brock, P.A. Dennis, K.K. Griendling, T.S. Diehl, and P.F. Davies. GTPτS loading of endothelial cells stimulates phospholipase C and uncouples ATP receptors. Am. J. Physiol 255: C667–C673, 1988.PubMedGoogle Scholar
  12. 12.
    S. Pirotton, E. Raspe, D. Demolie, C. Erneux, and J.M. Boeynaems. Involvement of inositol 1,4,5-triphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J. Biol. Chem. 262: 17461–17466, 1987.PubMedGoogle Scholar
  13. 13.
    S.L. Hong and D. Deykin. Activation of phospholipases A2 and C in pig aortic endothelial cells synthesizing prostacylin. J. Biol. Chem. 257: 7151–7154, 1982.PubMedGoogle Scholar
  14. 14.
    E.A. Jaffe, E.A., Grulich, J., B.B. Weksler G. Hampel, and K. Watanabe. Correlation between thrombin induced prostacyclin production and inositol trisphophate and cytosolic free calcium levels in cultured endothelial cells. J. Biol. Chem. 262: 8557–8565, 1987.Google Scholar
  15. 15.
    M.J. Berridge and R.F. Irvine. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321, 1984.PubMedCrossRefGoogle Scholar
  16. 16.
    M. Freissmuth, P.J. Casey, and A.G. Gilman. G proteins control diverse pathways of transmembrane signalling. Faseb. J. 3: 2125–2139, 1989.PubMedGoogle Scholar
  17. 17.
    P. Sternweis and A. Gilman. Aluminum: a requirement for the activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl. Acad. Sci. USA 79: 4888–4891, 1982.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    P. Blackmore, S. Bocckino, L. Waynick and J. Exton. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium mobilizing hormones and the control of cell calcium. Studies using aluminum fluoride. J. Biol. Chem. 260: 14477–14483, 1985.PubMedGoogle Scholar
  19. 19.
    I. Fuse and H.H. Tai. Stimulations of arachidonate release and inositol 1,4,5-triphosphate formation are mediated by distinct G-proteins in human platelets. Biochem. Biophys. Res. Comm. 146: 659–665, 1987.PubMedCrossRefGoogle Scholar
  20. 20.
    T.A.Voyno-Yasenetskaya, V.A. Tkachuk, V.A., E.G. Cheknyova, M.P. Panchenko, G.Y. Grigorian, R.J. Vavrek, J.M. Stewart, and U.S. Ryan. Guanine nucleotide-dependent pertussis-toxin insensitive regulation of phosphoinositide turnover by bradykinin in bovine pulmonary artery endothelial cells. Faseb J. 3: 44–51, 1989.PubMedGoogle Scholar
  21. 21.
    T.L. Lambert R.S. Kent and A.R. Whorton. Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J. Biol. Chem. 15288, 15293, 1986.Google Scholar
  22. 22.
    M.A. Clark, T.M. Conway, C.F. Bennett, S.T. Crooke, and J.M. Stadel Islet activating protein inhibits leukotriene D4 and C4 but not bradykinin or calcium ionophore- induced prostacyclin synthesis in bovine endothelial cells. Proc. Natl. Acad. Sci. 83: 7320–7324, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    L.F. Brass, C.C. Schaller and E.J. Belmonte.Inositol 1,4,5-triphosphate induced granule secretion in platelets. Evidence that the activation of phospholipase C mediated by platelet thromboxane receptors involves a guanine nucleotide distinct from that of thrombin. J. Clin Invest. 79: 1269–1265, 1986.CrossRefGoogle Scholar
  24. 24.
    S. Slivka, and P.A. Insel. Alpha 1-adrenergic receptor mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2 J. Biol. Chem. 262: 4200–4207, 1987.PubMedGoogle Scholar
  25. 25.
    R.M. Burch and J. Axelrod.Dissociation of bradykinin induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2 Proc. Natl. Acad. Sci. 83: 6374–6378, 1987.CrossRefGoogle Scholar
  26. 26.
    M.F. Crouch and E.G. Lapetina. No direct correlation between Ca++ mobilization and dissociation of G1 during platelet phospholipase activation. Biochem. Biophys. Res. Commun. 153: 21–30, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Mary E. Gerritsen
    • 1
  • Robert J. Mannix
    • 1
  1. 1.Department of PhysiologyNew York Medical CollegeValhallaUSA

Personalised recommendations