Purification and Characterization of a Phospholipase A2 from Human Osteoarthritic Synovial Fluid

  • Thomas P. Parks
  • Susan Lukas
  • Ann F. Hoffman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 275)


Phospholipase A2 (PLA2) from human osteoarthritic synovial fluid was purified to homogeneity in three steps. The NH2-terminal amino acid sequence and biochemical characteristics of the enzyme were identical to the Peak A PLA2 activity of rheumatoid synovial fluid (1). The enzyme exhibited an apparent mass of 14,000, an absolute Ca++- dependence, an alkaline pH optimum, and was inhibited by sodium deoxycholate (DOC), NaCl and 0.5 M Tris-HCl. The enzyme strongly prefered phosphatidylethanolamine (PE) as substrate over phosphatidylcholine (PC) or phosphatidylinositol (PI), and hydrolyzed PE containing arachidonic acid or linoleic acid in the sn-2 position at similar rates. Heparin bound to the enzyme but did not inhibit catalytic activity. In addition, the human enzyme was not inhibited by the acidic ‘chaperone’ subunit of crotoxin despite considerable sequence similarity with the basic PLA2 subunit of the neurotoxin. The enzyme was capable of hydrolyzing E. coli membrane phospholipids in the presence of the neutrophil bactericidal/permeability increasing protein (BPI). This finding, coupled to the reported pro-inflammatory activity and presence of the enzyme in inflammatory cells, supports the hypothesis that it may be a component of the host defense mechanism which can, under certain conditions, contribute to the pathogenesis of inflammatory disease.


Hyaluronic Acid Synovial Fluid Chondroitin Sulfate Platelet Activate Factor Aristolochic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Seilhamer, S. Plant, W. Pruzanski, J. Schilling, E. Stefanski, P. Vadas, and L.K. Johnson. Multiple forms of phospholipase A2 in arthritic synovial fluid. J. Biochem. 106:38–42, 1989.PubMedGoogle Scholar
  2. 2.
    H.M. Verheij, A.J. Slotboom, and G.H. de Haas. Structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol. 91:91–203, 1981.PubMedGoogle Scholar
  3. 3.
    H. van den Bosch. Intracellular phospholipases A. Biochim. Biophys. Acta 604:191–246, 1980.PubMedGoogle Scholar
  4. 4.
    E.A. Dennis. Phospholipases.In: “The enzymes” P.D. Boyer, ed. Academic Press, New York. Vol. 16, pp. 307–353,(1983).Google Scholar
  5. 5.
    F.J.G.M. van Kuijk, A. Sevanian, G.J. Handelman and E.A. Dratz. A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends. Biochem. Sci. 12:31–34, 1987.CrossRefGoogle Scholar
  6. 6.
    M.J. Broekman. Stimulated platelets release equivalent amounts of arachidonate from phosphatidylcholine, phosphatidylethanolamine and inositides. J. Lipid Res. 27:884–891, 1986.PubMedGoogle Scholar
  7. 7.
    F.H. Chilton, J.M. Ellis, S.C. Olson and R.C. Wykle. 1-O- Alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine: A common source of platelet activating factor and arachidonate in human polymorphonuclear leukocytes. J. Biol. Chem. 259:12014–12019, 1984.PubMedGoogle Scholar
  8. 8.
    D.H. Albert and F. Synder. Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. J. Biol. Chem. 258:97–102, 1983.PubMedGoogle Scholar
  9. 9.
    P. Rosenberg. The relationship between enzymatic activity and pharmacological properties of phospholipases in natural poisons. In: “Animal, Plant and Microbial Toxins” J.B. Harris, ed. Oxford University Press, Oxford. pp.129–174 (1986).Google Scholar
  10. 10.
    R.M. Kini and H.J. Evans. A model to explain the pharmacolo- gical effects of snake venom phospholipases A2. Toxicon 27:613–635, 1989.PubMedCrossRefGoogle Scholar
  11. 11.
    P. Vadas and W. Pruzanski. Role of secretory phospholipase A2 in the pathobiology of disease. Lab. Invest. 55:391–404, 1986.PubMedGoogle Scholar
  12. 12.
    P. Vadas and J.B. Hay. Involvement of circulating phospholipase A2 in the pathogenesis of the hemodynamic changes in endotoxin shock. Can. J. Physiol. Pharmacol. 61:561–566, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    P. Vadas, W. Pruzanski, E. Stefanski, B. Sternby, R. Mustard, J. Bohnen, I. Fraser, V. Farewell and C. Bombardier. Pathogenesis of hypotension in septic shock: Correlation of circulating phospholipase A2 levels with circulatory collapse. Crit. Care Med. 16:1–7, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    S. Forst, J. Weiss, P. Elsbach, J.M. Maraganore, I. Reardon, and R.L. Heinrikson. Structural and functional properties of a phospholipase A2 purified from an inflammatory exudate. Biochemistry 25:8381–8385, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    H.W. Chang, I. Kudo, M. Tomita, and K. Inoue. Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of caseinate-treated rat. J. Biochem. 102:147–154, 1987.PubMedGoogle Scholar
  16. 16.
    W. Pruzanski, P. Vadas, E. Stefanski and M.B. Urowitz. Phospholipase A2 activity in sera and synovial fluids in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme. J. Rheumatol. 12:211–216, 1985.PubMedGoogle Scholar
  17. 17.
    W. Pruzanski, E.C. Keystone, B. Sternby, C. Bombardier, K.M. Snow, and P. Vadas. Serum phospholipase A2 correlates with disease activity in rheumatoid arthritis. J. Rheumatol. 15:1351–1355, 1988.PubMedGoogle Scholar
  18. 18.
    B.S. Vishwanath, A.A. Fawzy, and R.C. Franson. Edema-inducing activity of phospholipase A2 purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 12:549–561, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    P. Vadas, W., Pruzanski, J. Kim and V. Fornasier. The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A2. Am. J. Pathol. 134:807–811, 1989.PubMedCentralPubMedGoogle Scholar
  20. 20.
    M. Hayakawa, K. Horigome, I. Kudo, M. Tomita, S. Nojima, and K. Inoue. Amino acid composition and NH2-terminal amino acid sequence of rat platelet secretory phospholipase A2. J. Biochem. 101:1311–1314, 1987.PubMedGoogle Scholar
  21. 21.
    H. Mizushima, I. Kudo, K. Horigome, M. Murakami, M. Hayakawa, D.-K. Kim, E. Kondo, M. Tomita, and K. Inoue. Purification of rabbit secretory phospholipase A2 and its characteristics. J. Biochem. 105:520–525, 1989.PubMedGoogle Scholar
  22. 22.
    R. Verger, F. Ferrato, C. M. Mansbach and G Pieroni. Novel intestinal phospholipase A2: Purification and some molecular characteristics. Biochemistry 21:6883–6889, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    T. Ono, H. Tojo, E. Kuramitsu, H. Kagamiyama, and M.Okamoto. Purification and characterization of a membrane associated phospholipase A2 from rat spleen. J. Biol. Chem. 263:5732–5738, 1988.PubMedGoogle Scholar
  24. 24.
    R.L. Heinrikson, E.T. Krueger, and P.S. Keim. Amino acid sequence of phospholipase A2-α from the venom of Crotalus adamanteus. J. Biol. Chem. 252:4913–4921, 1977.PubMedGoogle Scholar
  25. 25.
    S. Hara, I. Kudo, K. Matsuta, T. Miyamoto, and K. Inoue. Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid. J. Biochem. 104:326–328, 1988.PubMedGoogle Scholar
  26. 26.
    C.-Y. Lai and K. Wada. Phospholipase A2 from human synovial fluid: Purification and structural homology to the placental enzyme. Biochem. Biophys. Res. Commun. 157:488–493, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    P. Patriarca, S. Beckerdite, and P. Elsbach. Phospholipases and phospholipid turnover in Escherichia coli spheroblasts. Biochim. Biophys. Acta 260:593–600, 1972.PubMedCrossRefGoogle Scholar
  28. 28.
    R.M. Kramer, G.C. Checani, A. Deykin, C. R. Pritzker and D. Deykin. Solubilization and properties of Ca++-dependent human platelet phospholipase A2. Biochim. Biophys. Acta 878:394–403, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    U.K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685, 1970.PubMedCrossRefGoogle Scholar
  30. 30.
    E. Stefanski, W. Pruzanski, B. Sternby, and P. Vadas. Purification of a soluble phospholipase A2 from synovial fluid in rheumatoid arthritis. J. Biochem. 100:1297–1303, 1986.PubMedGoogle Scholar
  31. 31.
    S.D. Aird, I.I. Kaiser, R.V. Lewis, and W.G. Kruggel. Rat- tlesnake presynaptic neurotoxins: Primary structure and evolutionary origin of the acidic subunit. Biochemistry 24: 7054–7058, 1985PubMedCrossRefGoogle Scholar
  32. 32.
    S.D. Aird, I.I. Kaiser, R.V. Lewis, and W.G. Kruggel. A complete amino acid sequence for the basic subunit of crotoxin. Arch. Biochem. Biophys. 249:296–300, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    P. Elsbach, J. Weiss, and L. Kao. The role of intramembrane Ca2+ in the hydrolysis of the phospholipids of Escherichia coli by Ca2+-dependent phospholipases. J. Biol. Chem. 260: 1618–1622, 1985.PubMedGoogle Scholar
  34. 34.
    R.M. Kramer, C. Hession, B. Johansen, G. Hayes, P. McGray, E.P. Chow, R. Tizard, R.B. Pepinsky. Structure and properties of a human non-pancreatic phospholipase A2. J. Biol. Chem. 264:5768–5775, 1989.PubMedGoogle Scholar
  35. 35.
    A.A. Fawzy, R. Dobrow, and R.C. Franson. Modulation of phospholipase A2 activity in human synovial fluid by cations. Inflammation 11:389–400, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    P. Vadas, E. Stefanski, and W. Pruzanski. Characterization of extracellular PLA2 in rheumatoid synovial fluid. Life Sci. 36:579–587, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    C. Bon, F. Radvanyi, B. Saliou, and G. Faure. Crotoxin: A biochemical analysis of its mode of action. J. Toxicol.-Toxin Rev. 5:125–138, 1986.CrossRefGoogle Scholar
  38. 38.
    S. Forst, J. Weiss, J.M. Maraganore, R.L. Heinrikson, and P. Elsbach. Relation between binding and the action of phospholipases A2 on Escherichia coli exposed to the bactericidal/permeability increasing protein of neutrophils. Biochim. Biophys. Acta 920:221–225, 1987.PubMedCrossRefGoogle Scholar
  39. 39.
    S. Forst, J. Weiss, P. Blackburn, B. Frangione, F. Goni, and P. Elsbach. Amino acid sequence of a basic Agkistrodon halys blomhoffii phospholipase A2. Possible role of NH2terminal lysines in action on phospholipids of Escherichia coli. Biochemistry 25:4309–4314, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    J. Seilhamer, P. Vadas. W. Pruzanski, S. Plant, E. Stefanski, and L. Johnson. Synovial fluid phospholipase A2 in arthritis. In:“Therapeutic Approaches to Inflammatory Disease” A.J. Lewis, N.S. Doherty, and N.R. Ackerman, eds. Elsevier, New York. pp. 129–136 (1989).Google Scholar
  41. 41.
    S. Hara, I. Kudo, H.W. Chang, K. Matsuta, T. Miyamoto, and K. Inoue. Purification and characterization of extracellular phospholipase A2 from human synovial fluid in rheumatoid arthritis. J. Biochem. 105:395–399, 1989.PubMedGoogle Scholar
  42. 42.
    W. Cho, A.G. Tomaselli, R.L. Heinrikson, and F.J. Kezdy. The chemical basis for interfacial activation of monomeric phospholipases A2. J. Biol. Chem. 263:11237–11241, 1988.PubMedGoogle Scholar
  43. 43.
    K. Horigome, M. Hayakawa, K. Inoue, and S. Nojima. Purifi- cation and characterization of PLA2 released from rat platelets. J. Biochem. 101:625–631, 1987.PubMedCrossRefGoogle Scholar
  44. 44.
    D.K. Kim, I. Kudo, and K. Inoue. Detection in human platelets of phospholipase A2 activity which preferentially hydrolyzes an arachidonoyl residue. J. Biochem. 104:492–494, 1988.PubMedGoogle Scholar
  45. 45.
    F. Alonso, P.M. Henson, and C.C. Leslie. A cytosolic phos- pholipase in human neutrophils that hydrolyzes arachidonoyl-containing phosphatidylcholine. Biochim. Biophys. Acta 878:273–280, 1986.PubMedCrossRefGoogle Scholar
  46. 46.
    J. Wijkander and R. Sunder. A phospholipase A2 hydrolyzing arachidonoyl-phospholipids in mouse peritoneal macrophages. FEBS Lett. 244:51–56, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    I. Flesch, B. Schmidt and E. Ferber. Acyl chain specificity and kinetic properties of phospholipase A1 and A2 of bone marrow-derived macrophages. Z. Naturforsch. 40c:356–363, 1989.Google Scholar
  48. 48.
    C.C. Leslie, D.R. Voekler, J.Y. Channon, M.M. Wall and P.Z. Zelarney. Properties and purification of an arachidonoyl-hydrolyzing phospholipase A2 from a macrophage cell line, RAW 264.7. Biochim. Biophys. Acta 963:476–492, 1988.PubMedCrossRefGoogle Scholar
  49. 49.
    T.M. Karnauchow and A.C. Chan. Characterization of human placental blood vessel phospholipase A2. Demonstration of substrate selectivity for arachidonyl-phosphatidylcholine. Int. J. Biochem. 17:1317–1319, 1985.PubMedCrossRefGoogle Scholar
  50. 50.
    R.M. Kramer, J.A. Jakubowski, and D. Deykin. Hydrolysis of 1- alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine, a common precursor of platelet activating factor and eicosanoids, by human platelet phospholipase A2. Biochim. Biophys. Acta 959:269–279, 1988.PubMedCrossRefGoogle Scholar
  51. 51.
    J.J. Seilhamer, W. Pruzanski, P. Vadas, S. Plant, J.A. Miller, J. Kloss, and L.K. Johnson. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264:5335–5338, 1989.PubMedGoogle Scholar
  52. 52.
    A. Kanda, T. Ono, N. Yoshida, H. Tojo and M. Okamoto. The primary structure of a membrane-associated phospholipase A2 from human spleen. Biochem. Biophys. Res. Comm. 163:42–48, 1989.PubMedCrossRefGoogle Scholar
  53. 53.
    H. Breithaupt. Enzymatic characteristics of crotalus phospholipase A2 and the crotoxin complex. Toxicon 14:221–223, 1976.PubMedCrossRefGoogle Scholar
  54. 54.
    M.A. Clark, T.A. Conway, R.G.L. Shorr, and S.T. Crooke. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J. Biol. Chem. 262:4402–4406, 1987.PubMedGoogle Scholar
  55. 55.
    A.J. Aarsman, J.G.N. de Jonge, E. Arnoldussen, F.W. Neys, P.D. van Wassernaar, and H. Van den Bosch. Immunoaffinity purification, partial sequence, and subcellular localization of rat liver phospholipase A2. J. Biol. Chem. 264:10008–10014, 1989.PubMedGoogle Scholar
  56. 56.
    C. E. Ooi, G. Wright, J. Weiss and P. Elsbach. Purification to homogeneity and properties of rabbit granulocyte PLA2. Clin. Res. 36:465A, 1988.Google Scholar
  57. 57.
    J.M. Maraganore, and R.L. Heinrikson. The lysine-49 phospho- lipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J. Biol. Chem. 261:4797–4804, 1986.PubMedGoogle Scholar
  58. 58.
    S. Tanaka, N. Mohri, H. Kihara, and Ohno, M. Amino acid sequence of Trimeresurus flavoviridis phospholipase A2. J. Biochem. 99:281–299, 1986.PubMedGoogle Scholar
  59. 59.
    K. Tomoo, H. Ohishi, T. Ishida, M. Inoue, K. Ikeda, Y. Aoki, and Y. Samejima. Revised amino acid sequence, crystallization, and preliminary X-ray diffraction analysis of acidic phospholipase A2 from the venom of Agkistrodon halys blomhoffi. J. Biol. Chem. 264:3636–3638, 1989.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Thomas P. Parks
    • 1
  • Susan Lukas
    • 1
  • Ann F. Hoffman
    • 1
  1. 1.Department of BiochemistryBoehringer Ingelheim Pharmaceuticals, Inc.RidgefieldUSA

Personalised recommendations