Advertisement

Localization and Evolution of Two Human Phospholipase A2 Genes and Two Related Genetic Elements

  • Lorin K. Johnson
  • Susan Frank
  • Peter Vades
  • Waldemar Pruzanski
  • Aldons J. Lusis
  • Jeffrey J. Seilhamer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 275)

Abstract

Mammals are now known to contain at least two distinct classes of phospholipases A2, the progenitors of which can be seen in the venoms of snakes. Mammalian “Type I-” PLA2, synthesized primarily by the pancreas, is also present in smaller amounts in other tissues including lung, spleen, and kidney. Recently, a mammalian “Type II-” PLA2 has been sequenced, and shown to occur in platelets, synovial cells and fluid, cells of inflammatory peritoneal exudate, liver, intestine, kidney, and placenta. This form, referred to here as Type IIA PLA2, could play a key role in arachidonate release in both normal and pathologic inflammation. The genes encoding both forms have also been recently cloned. Here, the sites of synthesis and respective roles of the two known enzymes are discussed, along with an analysis of the evolutionary conservation of Type IIA PLA2 gene sequence. In addition, two related genetic elements containing sequences homologous to a portion of Type II PLA2 are described, which map to the same chromosome as the Type IIA PLA2 gene (chromosome 1). Either or both of these could also encode a portion of additional mammalian PLA2s.

Keywords

Synovial Fluid Somatic Cell Hybrid Binding Loop Synovial Fluid34 Human Synovial Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M.G. Van Golde, and S.G. van den Bergh, Introduction: general pathway in the metabolism of lipids in mammalian tissues, in: “Lipid Metabolism in Mammals”, F. Snyder, ed., Plenum Publishing Corp., New York (1977).Google Scholar
  2. 2.
    P. Elsbach, J. Weiss, R. Franson, S. Beckerdite-Quagliata, A. Schneider, and L. Harris, Separation and purification of a potent bactericidal/permeability-increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes, J. Biol. Chem. 254:11000 (1979).PubMedGoogle Scholar
  3. 3.
    M.F. Heath, and W. Jacobson, The action of lung lysosomal phospholipases on dipalmitoyl phosphotidylcholine and its significance for the synthesis of pulmonary surfactant, Pediatr. Res. 14:254 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    H.M. Verheij, A.J. Slotboom, and G.H. De Haas, Structure and function of phospholipase A2, Rev. Physiol. Biochem. Pharmacol. 91:91 (1981).PubMedGoogle Scholar
  5. 5.
    R.F. Irvine, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J. 204:3 (1982).PubMedCentralPubMedGoogle Scholar
  6. 6.
    F. Snyder, Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids, Med. Res. Rev. 5:107 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Vadas and W. Pruzanski, Role of Extracellular Phospholipase A2 in Inflammation, in: “Adv. in Inflamm. Res.”, I. Otterness, R. Capetola, and S. Wong, eds., Raven Press, New York 7:51 (1984).Google Scholar
  8. 8.
    W. Pruzanski, P. Vadas, J. Kim, H. Jacobs, and E. Stefanski, Phospholipase A2 activity associated with synovial fluid cells, J. Rheumatol. 15:791 (1989).Google Scholar
  9. 9.
    P. Vadas, W. Pruzanski, E. Stefanski, L. Johnson, J. Seilhamer, R. Mustard, Jr., and J. Bohnen, Phospholipase A2 in acute bacterial peritonitis in man, in: “Cell Activation and Signal Initiation: Receptor and Phospholipase Control of Inositol Phosphate, PAF, and Eicosanoid Production,” E. Dennis, ed., Alan R. Liss, New York (1989).Google Scholar
  10. 10.
    P. Vadas, W. Pruzanski, and E. Stefanski, Extracellular phospholipase A2: causative agent in circulatory collapse of septic shock?, Agents and Actions 24:320 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Vadas, W. Pruzanski, E. Stefanski, B. Sternby, R. Mustard, J. Bohnen, I. Fraser, V. Farewell, and C. Bombardier, Pathogenesis of hypotension in septic shock: correlation of circulating phospholipase A2 levels with circulatory collapse, Crit. Care Med. 16:1 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Vadas, W. Pruzanski, E. Stefanski, J. Ruse, V. Farewell, J. McLaughlin, and C. Bombardier, Concordance of endogenous Cortisol and phospholipase A2 levels in gram-negative septic shock: a prospective study, J. Lab Clin. Med. 111:584 (1988).PubMedGoogle Scholar
  13. 13.
    P. Vadas, W. Pruzanski, J. Kim, and V. Fornasier, The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A2, Am. J. Pathol. 134:807 (1989).PubMedCentralPubMedGoogle Scholar
  14. 14.
    M.J. Dufton, D. Eaker and R.C. Hider, Concormational properties of phospholipases A2: Secondary structure prediction, circular dichroism and relative interface hydrophobicity, Eur. J. Biochem. 137:537 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    M.J. Dufton and R.C. Hider, Classification of phospholipase A2 according to sequence. Evolutionary and pharmacological implications, Eur. J. Biochem. 137:545 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Renetseder, S. Brunie, B.W. Dijkstra, J. Drenth, and P.B. Sigler, A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom, J. Biol. Chem. 260:11627 (1985).PubMedGoogle Scholar
  17. 17.
    A.L. Slotboom, H.M. Verheij, and G.H. De Haas, On the mechanism of phospholipase A2, New Comp. Biochem. 4:354 (1982).Google Scholar
  18. 18.
    R.L. Heinrikson, E.T. Krueger, and P.S. Keim, J. Biol. Chem. 252:4913 (1977).PubMedGoogle Scholar
  19. 19.
    R.M. Kini, and H.J. Evans, Structure-function relationships of phospholipases: the anticoagulant region of phospholipase A2, J. Biol. Chem. 262:14402 (1987).PubMedGoogle Scholar
  20. 20.
    W.C. Puijk, H.M. Verheij, and G.H. De Haas, The primary structure of phospholipase A2 from porcine pancreas: a reinvestigation. Biochim. Biophys. Acta 492:254 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    O. Ohara, M. Tamiki, E. Nakamura, Y. Tsuruta, Y. Fujii, M. Shin, H. Teraoka, and M. Okamoto, Dog and rat pancreatic phospholipases A2: Complete amino acid sequences deduced from complimentary DNAs. J. Biochem. 99:733 (1986).PubMedGoogle Scholar
  22. 22.
    H.M. Verheij, J. Westerman, B. Sternby, and G. De Haas, The complete primary sequence of phospholipase A2 from human pancreas, Biochim. Biophys. Acta 747:93 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    J.J. Seilhamer, T.L. Randall, M. Yamanaka, and L.K. Johnson, Pancreatic phospholipase A2: Isolation of the human gene and cDNAs from porcine pancreas and human lung, DNA 5:519 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Verger, F. Ferrato, CM. Mansback, and G. Pieroni, Novel intestinal phospholipase A2: purification and some molecular characteristics. Biochemistry 21:6883 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    H.W. Chang, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of caseinate-treated rat, J. Biochem. 102:147 (1987).PubMedGoogle Scholar
  26. 26.
    M. Hayakawa, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of a membrane-bound phospholipase A2 from rat platelets, J. Biochem. 103:263 (1988).PubMedGoogle Scholar
  27. 27.
    M. Hayakawa, I. Kudo, M. Tomita, S. Nojima, and K. Inoue, The primary structure of rat platelet phospholipase A2, J. Biochem. 104:767 (1988).PubMedGoogle Scholar
  28. 28.
    T. Ono, H. Tojo, S. Kuramitsu, H. Kagamiyama, and M. Okamoto, Purification and characterization of a membrane-associated phospholipase A2 from rat spleen: its comparison with a cytosolic phospholipase A2 S-l, J. Biol. Chem. 263:5732 (1988).PubMedGoogle Scholar
  29. 29.
    M. Hayakawa, K. Horigome, I. Kudo, M. Tomita, S. Nojima, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of rat platelet secretory phospholipase A2, J. Biochem. 101:1311 (1987).PubMedGoogle Scholar
  30. 30.
    A.J. Aarsman, J.G. de John, E. Arnoldussen, F.W. Neys, P.D. van Wassenaar, and H. Van den Bosch, Immunoaffinity purification, partial sequence, and subcellular localization of rat liver phospholipase A2, J. Biol. Chem. 264:10008 (1989).PubMedGoogle Scholar
  31. 31.
    J. Forst, J. Weiss, P. Elsbach, J.M. Maranganore, I. Reardon, and R.L. Heinrikson, Biochemistry 25:8381 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    C. E. Ooi, G. Wright, J. Weiss, and P. Elsbach, Purification to homogeneity and properties of rabbit granulocyte PLA2, Clin. Res. 36:465A (1988).Google Scholar
  33. 33.
    H. Mizushima, I. Kudo, K. Horigome, M. Murakami, M. Hayakawa, D.K. Kim, E. Kondo, M. Tomita, and K. Inoue, Purification of rabbit platelet secretory phospholipase A2 and its characteristics, J. Biochem. 105:520 (1989).PubMedGoogle Scholar
  34. 34.
    S. Hara, I. Kudo, K. Matsuta, T. Miyamoto, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid, J. Biochem. 104:326 (1988).PubMedGoogle Scholar
  35. 35.
    J. Seilhamer, S. Plant, W. Pruzanski, J. Schilling, E. Stefanski, P. Vadas, and L. Johnson, Multiple forms of phospholipase A2 in arthritic synovial fluid, J. Biochem. 106:730 (1989).Google Scholar
  36. 36.
    J.J. Seilhamer, P. Vadas, S. Plant, J.A. Miller. J. Kloss, W. Pruzanski, and L.K. Johnson, Cloning and reconbinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid, J. Biol. Chem. 264:5335 (1989).PubMedGoogle Scholar
  37. 37.
    R.M. Kramer, C. Hession, B. Johansen, G. Hayes, P. McGray, E.P. Chow, R. Tizzard, and R.B. Pepinski, Structure and properties of a human non-pancreatic phospholipase A2, J. Biol. Chem. 264:5768 (1989).PubMedGoogle Scholar
  38. 38.
    C. Lai and K. Wada, Phospholipase A2 from human synovial fluid purification and structural homology to the placental enzyme, Biochem. Biophys. Res. Commun. 157:488 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    C. van den Bergh, A. Slotboom, H. Verheij, and G. de Haas, The role of Asp-49 and other conserved amino acids in phospholipases A2 and their importance for enzymatic activity, J. Cell. Biochem. 39:379 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Tojo. T. Ono, S. Kuramitsu, H. Kagamiyama, and M. Okomoto, A phospholipase A2 in the supernatant fraction of rat spleen: its similarity to rat pancreatic phospholipase A2, J. Biol. Chem. 263:5724 (1988).PubMedGoogle Scholar
  41. 41.
    H. Tojo, T. Ono, and M. Okamoto, A pancreatic-type phospholipase A2 in rat gastric mucosa, Biochem. Biophys. Res. Commun. 151:1188 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Matsuda, M. Ogawa, T. Shibata, K. Nakaguchi, J. Nishijima, C. Wakasugi, and T. Mori, Distribution of immunoreactive pancreatic phospholipase A2 (IPPL-2) in various tissues, Res. Commun, in Chem. Pathol, and Pharmacol. 58:281 (1987).Google Scholar
  43. 43.
    D. Bar-Sagi, J. Suhan, F. McCirmick, and J. Feramisco, Localization of phospholipase A2 in normal and ras-transformed cells, J. Cell Biol. 106:1649 (1988).PubMedCrossRefGoogle Scholar
  44. 44.
    T. Nevalainen, J. Escola, A. Aho, V. Havia, T. Lovgren, and V. Nanto, Immunoreactive phospholipase A2 in serum in acute pancreatitis and pancreatic cancer, Clin. Chem. 31:1116 (1985).PubMedGoogle Scholar
  45. 45.
    J.J. Seilhamer, T.L. Randall, L.K. Johnson, C. Heinzmann, I. Klisak, R.S. Sparkes, and A.J. Lusis, Novel gene exon homologous to pancreatic phospholipase A2: sequence and chromosomal mapping of both human genes, J. Cell. Biochem. 39:327 (1988).CrossRefGoogle Scholar
  46. 46.
    P. Lind and D. Eaker, Complete amino-acid sequence of a nonneurotoxic, non-enzymatic phospholipase A2 homolog from the venom of the Australian tiger snake Notechis scutatus, Eur. J. Biochem. 111:403 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Seilhamer, S. Frank, P. Vadas, W. Pruzanski, A.J. Lusis, and L.K. Johnson, Chromosomal mapping of human synovial fluid PLA2 and a related exon, manuscript in preparation.Google Scholar
  48. 48.
    M.A. Innis, K.B. Myambo, D.H. Gelfand, and M.D. Brow, DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA, Biochemistry 85:9436 (1988).Google Scholar
  49. 49.
    S. Mount, A catalogue of splice junction sequences. Nucleic Acids Res. 10:459 (1982).PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    J. Maranganore and R. Heindrikson, The Lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus: relation of structure and function to other phospholipases A2, J. Biol. Chem. 261:4797 (1986).Google Scholar
  51. 51.
    M.J. Geisow, Common domain structure of Ca2+ and lipid-binding proteins, Febs. Lett. 203:99 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    K. Weber, and N. Johnsson, Repeating sequence homologies in the p36 target protein of retroviral protein kinases and lipocortin, the p37 inhibitor of phospholipase A2, Febs. Lett. 203:95 (1986).PubMedCrossRefGoogle Scholar
  53. 53.
    M.O. Dayhoff, Atlas of Protein Sequence and Structure, Suppl. 5:273 (1978).Google Scholar
  54. 54.
    R.H. Kretsinger, Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem. 8:119 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    S. Sahu, and W.S. Lynn, Characterization of phospholipase A from pulmonary secretions of patients with alveolar proteinosis. Biochim. Biophys. Acta 489:307 (1977).PubMedCrossRefGoogle Scholar
  56. 56.
    N.C.C. Gray, and K.P. Strickland, The purification and characterization of a phospholipase A2 activity from the 106000 X G pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J. Biochem. 60:108 (1982).PubMedCrossRefGoogle Scholar
  57. 57.
    R.M. Kramer, C. Wuthrich, C. Bollier, P.R. Allegrini, and P. Zahler, Isolation of phospholipase A2 from sheep erythrocyte membranes in the presence of detergents, Biochim. Biophys. Acta 507:381 (1978).CrossRefGoogle Scholar
  58. 58.
    L. Aron, S. Jones, and C. J. Fielding, Human plasma lecithincholesterol acyl transferase, J. Biol. Chem. 253:7220 (1978).PubMedGoogle Scholar
  59. 59.
    R. Ulevitch, Y. Watanabe, M. Sano, M. Lister, R. Deems, and E. Dennis, Solubilization, purification, and characterization of a membrane-bound phospholipase A2 from the p388Dl macrophagelike cell line, J. Biol. Chem. 263:3079 (1988).PubMedGoogle Scholar
  60. 60.
    P. Antaki, J. Langais, P. Ross, P. Guerette, and K. Roberts, Evidence for two forms of phospholipase A2 in human semen, Gamete Research 18:305 (1988).CrossRefGoogle Scholar
  61. 61.
    S. Parthasarathy, U. Steinbrecher, J. Barnett, J. Witzum, and D. Steinberg, Essential role of phospholipase A2 activity in endothelial cell cell-induced modification of low density lipoprotein, Proc. Nat. Acad. Sci. U. S. A. 82:3000 (1985).CrossRefGoogle Scholar
  62. 62.
    A.J. Pierik, J. Nijssen, A. Aarsman, H. Van den Bosch, Calcium-independent phospholipase A2 in rat tissue cytosols. Biochim. Biophys. Acta 962:345 (1988).PubMedCrossRefGoogle Scholar
  63. 63.
    J. Seilhamer, P. Vadas, W. Pruzanski, S. Plant, E. Stefanski, and L. Johnson, Synovial fluid phospholipase A2 in arthritis, in: “Therapeutic Approaches to Inflammatory Diseases”, A.J. Lewis, N.S. Doherty, and N.R. Ackerman, ed., Elsevier, New York (1989).Google Scholar
  64. 64.
    van Binsbergen, et. al., manuscript in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Lorin K. Johnson
    • 1
  • Susan Frank
    • 2
  • Peter Vades
    • 3
  • Waldemar Pruzanski
    • 3
  • Aldons J. Lusis
    • 2
  • Jeffrey J. Seilhamer
    • 4
  1. 1.Salix Pharmaceuticals, Inc.SunnyvaleUSA
  2. 2.The Wellesley HospitalUniversity of TorontoTorontoCanada
  3. 3.the Depts. of Medicine and Microbiology and Jonsson Comprehensive Cancer CenterUCLALos AngelesUSA
  4. 4.Ideon CorporationRedwood CityUSA

Personalised recommendations