Extracellular Phospholipase A2 Activity in Two in Vivo Models of Inflammation

  • Kathleen R. Gans
  • Susan R. Lundy
  • Randine L. Dowling
  • William M. Mackin
  • Theresa M. Stevens
  • Janet S. Kerr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 275)


Two “in vivo” models of inflammation have been used to investigate the role of phospholipases A2 (PLA2) in inflammation. These models are caseininduced peritonitis in the rat and zymosan-induced peritonitis in the mouse. The extracellular PLA2 activities from peritoneal lavage fluid in these two models are similar: they are calcium dependent and have broad neutral pH optima. However, the relationship between extracellular PLA2 activity and cell influx in these models are not identical. In zymosan peritonitis, PLA2 activity preceeded peak cell influx, reaching a maximum within 15 min after zymosan injection, while cell influx peaked by 8 hr. In casein-induced peritonitis, the PLA2 activity peaked at 24 hr, while cell influx continued through 48 hr. The origins of the PLA2 activities in both models remain unclear; one potential source is the plasma. Understanding the role of extracellular PLA2 activity in “in vivo” models, and investigating specific inhibitors in these models may aid in our understanding of the role of extracellular PLA2 in diseases such as rheumatoid arthritis, endotoxin shock and pancreatitis.


Lavage Fluid Aristolochic Acid PLAa Activity Cell Influx Peritoneal Lavage Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Horigome, M. Hayakawa, K. Inoue, and S. Nojima, Selective release of phospholipase A2 and lysophosphatidylserine specific lysophospholipase from rat platelets, J. Biochem. 101:53 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    M.D. Lister, K.B. Glaser, R.J. Ulevitch, and E.A. Dennis, Inhibition studies on the membrane-associated phospholipase A2 in vitro and prostaglandin E2 production in vivo of the macrophage-like P388D1 cell. Effects of manoalide, 7,7-dimethyl-5,8-eicosandienoic acid and p-bromophenacyl bromide, J. Biol. Chem. 264:8520 (1989).PubMedGoogle Scholar
  3. 3.
    M.D. Lister, R.A. Deems, V. Watanabe, R.J. Ulevitch, and E.A. Dennis, Kinetic analysis of the Ca+2 -dependent, membrane-bound, macrophage phospholipase A2 and the effects of arachidonic acid, J. Biol. Chem. 263:7506 (1988).PubMedGoogle Scholar
  4. 4.
    P. Vadas, W. Pruzanski, J. Kim, and V. Fornasier, The proinflammatory effect of intraarticular injection of soluble human and venom phospholipase A2, Am. J. Path. 134:807 (1989).PubMedCentralPubMedGoogle Scholar
  5. 5.
    B.S. Vishwanath, A.A. Fawzy, and R.C. Franson, Edema-inducing activity of phospholipase A2 purified from human synovial fluid and inhibition by aristolochic acid, Inflammation. 12:549 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    W. Pruzanski, E.C. Keystone, B. Sternby, C. Bombardier, K.M. Snow, and P. Vadas, Serum phospholipase A2 correlates with disease activity in rheumatoid arthritis, J. Rheumatol. 15:1351 (1988).PubMedGoogle Scholar
  7. 7.
    T.J. Nevalainen, The role of phospholipase A2 in acute pancreatitis, Scand. J. Gastroenterol. 15:641 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Vadas and W. Pruzanski, Role of extracellular phopholipase A2 in inflammation, Adv. Infl. Res. 7:51 (1983).Google Scholar
  9. 9.
    H.W. Chang, I. Kudo, S. Hara, K. Karasawa and K. Inoue, Extracellular phospholipase A2 activity in peritoneal cavity of casein-treated rats, J. Biochem. 100:1099 (1986).PubMedGoogle Scholar
  10. 10.
    H.W. Chang, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of extracellular phospholipase A2 from peritoneal cavity of caseinate-treated rat, J. Biochem. 102:147 (1987).PubMedGoogle Scholar
  11. 11.
    T.M. Stevens, M. McGowan, J. Giannaras and J.S. Kerr, Characterization of extracellular phospholipase A2 activity in fluid and peritoneal cells from casein-treated rats, Inflammation (in press).Google Scholar
  12. 12.
    N.S. Doherty, P. Poubelle, P. Borgeat, T.H. Beaver, G.L. Westrich and N.L. Schrader, Intraperitoneal injection zymosan in mice induced pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin E2, Prostaglandins 30:769 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    K.R. Gans, S.R. Lundy, R.L. Dowling, T.M. Stevens and J.S. Kerr, Extracellular phospholipase A2 activity in cell free peritoneal lavage fluid from mice with zymosan peritonitis, Agents Actions 27:341 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    S.R. Lundy, R.L. Dowling, T.M. Stevens, J.S. Kerr, W.M. Mackin and K.R. Gans, Kinetics of phospholipase A2, arachidonic acid and eicosanoid appearance in mouse zymosan peritonitis, J. Immunology (in press).Google Scholar
  15. 15.
    W. Pruzanski, P. Vadas, E. Stefanski, and M.B. Urowitz, Phospholipase A2 activity in sera and synovial fluids in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme, J. Rheumatol. 12:211 (1985).PubMedGoogle Scholar
  16. 16.
    P. Vadas and J.B. Hay, The appearance and significance of phospholipase A2 in lymph draining tuberculin reactions, Am. J. Pathol. 107:285 (1982).PubMedCentralPubMedGoogle Scholar
  17. 17.
    R. Franson, C. Dobrow, J. Weiss, P. Elsbach, and W.B. Weglicki, Isolation and characterization of a phospholipase A2 from an inflammatory exudate, J. Lipid Res. 19:18 (1978).PubMedGoogle Scholar
  18. 18.
    M. Waite. Phospholipase A2 of mammalian cells. In: “Handbook of Lipid Research,” Vol. 5, The Phospholipases. D.J. Hanahan, ed. Plenum Press, New York (1987).Google Scholar
  19. 19.
    S. Hara, I. Kudo, K. Matsuta, T. Miyamoto, and K. Inoue, Amino acid composition and NH2-terminal amino acid sequence of human phospholipase A2 purified from rheumatoid synovial fluid, J Biochem. 104:326 (1988).PubMedGoogle Scholar
  20. 20.
    M. Hayakawa, I. Kudo, M. Tomita, and K. Inoue, Purification and characterization of membrane-bound phospholipases A2 from rat platelets, J. Biochem 103:263 (1988).PubMedGoogle Scholar
  21. 21.
    S. Hara, I. Kudo, H.W. Chang, K. Matsuta, T. Miyamoto and K. Inoue, Purification and characterization of extracellular phospholipase A2 from human synovial fluid in rheumatoid arthritis, J. Biochem. 105:395 (1989).PubMedGoogle Scholar
  22. 22.
    P. Patriarca, S. Beckerdite, and P. Elsbach, Phospholipases and phospholipid turnover in Escherichia coli spheroplasts, Biochem. Biophys. Acta. 260:593 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    F.F. Davidson, E.A. Dennis, M. Powell, and J.R. Glenney, Inhibition of phospholipase A2 by “lipocortins” and calpactin. An effect of binding to substrate phospholipids, J. Biol. Chem. 262:1698 (1987).PubMedGoogle Scholar
  24. 24.
    E.G. Bligh and W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem Physiol. 37:911 (1959).PubMedCrossRefGoogle Scholar
  25. 25.
    G.R. Bartlett. Phosphorus assay in column chromatography, J. Biol. Chem. 234:466 (1959).PubMedGoogle Scholar
  26. 26.
    R. Franson, P. Patriarca, and P. Elsbach, Phospholipid metabolism by phagocytic cells. Phospholipase A2 associated with rabbit polymorphonuclear leukocyte granules, J. Lipid Res. 15:380 (1974).PubMedGoogle Scholar
  27. 27.
    W.M. Mackin, S.M. Rakich, and C.L. Marshall, Inhibition of rat neutrophil functional responses by azapropazone, an anti-gout drug, Biochem. Pharmacol. 35:917 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    A.A. Fawzy, R. Dobrow, and R.C. Franson, Modulation of phospholipase A2 activity in human synovial fluid by cations, Inf1ammation 11:389 (1987).CrossRefGoogle Scholar
  29. 29.
    B. Rothhut, F. Russo-Marie, J. Wood, M. DiRosa, and R.J. Flower, Further characterization of the glucocorticoid-induced antiphospholipase protein “renocortin,” Biochem. Biophvs. Res. Comm. 117:878 (1983).CrossRefGoogle Scholar
  30. 30.
    M.M. Bradford. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    G.W. Snedecor. Sampling from normally distributed population. In: Statistical Methods, 5th ed., B.W. Snedecor and W.C. Cochran, eds. Iowa State Univ. Press Ames P. 45 (1964).Google Scholar
  32. 32.
    K. Burton, A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid, Biochem J. 62:315 (1956).PubMedCentralPubMedGoogle Scholar
  33. 33.
    K.W. Giles and A. Meyers, An improved dephenylaaine method for the estimation of deoxyribonucleic acid, Nature 206:93 (1965).CrossRefGoogle Scholar
  34. 34.
    S. Forst, J. Weiss, P. Elsbach, J.M. Maraganore, I. Reardon, and R.L. Heinrikson, Structural and functional properties of a phospholipase A2 purified from an inflammatory exudate, Biochemistry 25:8381 (1986).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Forst, J. Weiss, and P. Elsbach, Properties of an inflammatory exudate phospholipase A2 that degrades the phospholipids of E.coli during phagocytosis, Clin. Res. 34:724A (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kathleen R. Gans
    • 1
  • Susan R. Lundy
    • 1
  • Randine L. Dowling
    • 1
  • William M. Mackin
    • 1
  • Theresa M. Stevens
    • 1
  • Janet S. Kerr
    • 1
  1. 1.Medical Products DepartmentE. I. du Pont de Nemours & Co. (Inc.)WilmingtonUSA

Personalised recommendations