Monte Carlo Methods of Neutron Beam Design for Neutron Capture Therapy at the Mit Research Reactor (MITR-II)

  • S. D. Clement
  • J. R. Choi
  • R. G. Zamenhof
  • J. C. Yanch
  • O. K. Harling
Part of the Basic Life Sciences book series (BLSC, volume 54)


Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCI’ epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 μ/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the Malt-II epithermal beams is expected to improve the available beams.


Neutron Beam Boron Neutron Capture Therapy Relative Biological Effectiveness Gamma Dose Beam Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Briesmeister, ed., “MCNP–A General Monte Carlo Code for Neutron and Photon Transport, Version 3A,” Los Alamos National Laboratory, LA-7396-M Rev. 2 (1986).Google Scholar
  2. 2.
    R. Kinsey, “Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF,” Brookhaven National Laboratory, BNL-NCS-50496 (ENDF 102) 2nd Ed. (ENDF/B-V) (Oct. 1979).Google Scholar
  3. 3.
    R. J. Howerton, D. E. Cullen, R. C. Haight, M. H. MacGregor, S. T. Perkins, and E. F. Plechaty, “The LLL Evaluated Nuclear Data Library (ENDL): Evaluation Techniques, Reaction Index, and Descriptions of Individual Reactions,” Lawrence Livermore National Laboratory, UCRL-50400 Vol. 15, Part A (Sept. 1975).Google Scholar
  4. 4.
    M. A. Gardner and R. J. Howerton, “ACTL: Evaluated Neutron Activation Cross Section Library - Evaluation Techniques and Reaction Index,” Lawrence Livermore National Laboratory, UCRL-50400 Vol. 18 (Oct. 1978).Google Scholar
  5. 5.
    E. D. Arthur and P. G. Young, “Evaluated Neutron-Induced Cross-Sections for 54,56.Fe to 40 MeV,” Los Alamos Scientific Laboratory, LA-8626-MS (ENDF-304) (Dec. 1980 ).Google Scholar
  6. 6.
    D. G. Foster, Jr. and E. D. Arthur, “Average Neutronic Properties of ‘Prompt’ Fission Products,” Los Alamos National Laboratory, LA-9168-MS (Feb. 1982).Google Scholar
  7. 7.
    E. D. Arthur, P. G. Young, A. B. Smith, and C. A. Philis, “New Tungsten Isotope Evaluations for Neutron Energies Between 0.1 and 20 MeV,” Trans. Am. Nucl. Soc. 39:793 (1981).Google Scholar
  8. 8.
    R. A. Brooks, G. DiChiro, and M. R. Keller, “Explanation of Cerebral White-Gray Contrast in Computed Tomography,” J. Comp. Assist. Tomog. 4(4):489 (1980).Google Scholar
  9. 9.
    J. H. Hubbel, “Photon Mass Attenuation and Energy-Absorption Coefficients from 1 keV to 20 MeV,” Int. J. Appl. Radiat. Isot. 33:1269 (1982).Google Scholar
  10. 10.
    R. S. Caswell, J. J. Coyne, and M. L. Randolph, “KERMA Factors of Elements and Compounds for Neutron Energies Below 30 MeV,” Int. J. Appl. Radiat. Isot. 33:1227 (1982).Google Scholar
  11. 11.
    R. G. Zamenhof, B. W. Murray, G. L. Brownell, G. R. Wellum, and E. I. Tolpin, “Boron Neutron Capture Therapy for the Treatment of Cerebral Gliomas: I. Theoretical Evaluation of the Efficacy of Various Neutron Beams,” Med. Phys. 2(2):47 (1975).Google Scholar
  12. 12.
    R. G. Zamenhof, S. D. Clement, O. K. Harling, J. F. Brenner, D. E. Wazer, H. Madoc-Jones, and J. C. Yanch, “Monte Carlo Based Dosimetry and Treatment Planning for Neutron Capture Therapy of Brain Tumors.” (These Proceedings.)Google Scholar
  13. 13.
    R. A. Rydin, O. L. Deutsch, and B. W. Murray, “The Effect of Geometry on Capillary Wall Dose for Boron Neutron Capture Therapy,” Phys. Med. Biol. 21(1):134 (1976).Google Scholar
  14. 14.
    O. L. Deutsch and B. W. Murray, “Monte Carlo Dosimetry Calculations for Boron Neutron Capture Therapy in the Treatment of Brain Tumors, Nucl. Technol. 26:320 (1975).Google Scholar
  15. 15.
    W. S. Snyder, M. R. Ford, G. G. Warner, and H. L. Fisher, Jr., “Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom,” MIRD, J. Nucl. Med. Suppl. No. 3, Pamphlet 5, 47 (1969).Google Scholar
  16. 16.
    R. G. Zamenhof, S. D. Clement, K. Lin, C. Lui, D. Ziegelmiller, and O. K. Harling, “Monte Carlo Treatment Planning and High-Resolution Alpha-Track Autoradiography for Neutron Capture Therapy,” Strahlenther. Onkol. 165(2/3):188 (1989).Google Scholar
  17. 17.
    J. R. Choi, S. D. Clement, O. K. Harling, and R. G. Zamenhof, “Neutron Capture Therapy Beams at MITR-II.” (These Proceedings.)Google Scholar
  18. 18.
    K. Harling, “Preliminary Design of Epithermal Beam for MTIR-II,” Internal Memo (July 13, 1987 ).Google Scholar
  19. 19.
    H. Soodak„ ed., Reactor Handbook 2nd Ed., Interscience Publishers, New York (1962).Google Scholar
  20. 20.
    A. B. Chilton, J. K. Shultis, and R. E. Faw, Principles of Radiation Shielding Prentice-Hall, Inc., New Jersey, pp. 90–92 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. D. Clement
    • 1
  • J. R. Choi
    • 1
  • R. G. Zamenhof
    • 2
  • J. C. Yanch
    • 1
  • O. K. Harling
    • 1
  1. 1.Nuclear Reactor LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Radiation OncologyTufts — New England Medical CenterBostonUSA

Personalised recommendations