Advertisement

A Beam-Modification Assembly for Experimental Neutron Capture Therapy of Brain Tumors

  • D. N. Slatkin
  • J. A. Kalef-Ezra
  • S. K. Saraf
  • D. D. Joel
Part of the Basic Life Sciences book series (BLSC, volume 54)

Abstract

Recent attempts to treat intracerebral rat gliomas by boron neutron capture therapy (BNCT) have been somewhat disappointing [1,2], perhaps in part because of excessive whole-body and nasopharyngeal irradiation. Intracerebral rat gliomas were treated by BNCT with more success using a new beam-modification assembly (Figure 1). Rats were infused with the sulfhydryl borane dimer Na4 10B24H22S2 intraperitoneally before irradiation at the rate of ~2 mg 10B per kg body weight per hour for 72 hours [3]. Boron-10 concentrations measured by the neutron-induced prompt-gamma technique [4] in 0.3 ml aliquots of blood sampled from each rat several minutes after the end of infusion averaged 35 μg per gram (range 24–42 μg/g). Boron-10 concentrations in similar rat brain tumors after 72 hours of identical infusion were twenty-five percent lower than blood 10B concentrations, on the average.

Keywords

Boron Neutron Capture Therapy Gold Wire Experimental Neutron Identical Infusion Thermal Neutron Fluences 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Slatkin, D. D. Joel, R. G. Fairchild, P. L. Micca, M. M. Nawrocky, B. H. Laster, J. A. Coderre, G. C. Finkel, C. E. Poletti, and W. H. Sweet, “Distributions of Sulfhydryl Borane Monomer and Dimer in Rodents and Monomer in Humans: Boron Neutron Capture Therapy of Melanoma and Glioma in Boronated Rodents,” in Proc. 1988 Workshop on Clinical Aspects of Neutron Capture Therapy R. G. Fairchild, V. P. Bond, and A. D. Woodhead, eds., Basic Life Sciences Series, Vol. 50, Plenum Press, New York, p. 179 (1989).Google Scholar
  2. 2.
    N. R. Clendenon, R. F. Barth, J. H. Goodman, A. E. Staubus, W. A. Gordon, M. L. Moeschberger, F. Alam, A. H. Soloway, R. G. Fairchild, D. N. Slatkin, and J. A. Kalef-Ezra. “Enhanced Survival in a Rat Glioma Model Following BNCT,” Strahlenther. Onkol. 165(2/3):222 (1989).Google Scholar
  3. 3.
    D. Joel, D. Slatkin, R. Fairchild, P. Micca, and M. Nawrocky, “Pharmacokinetics and Tissue Distribution of the Sulfhydryl Boranes (Monomer and Dimer) in Glioma-Bearing Rats,” Strahlenther. Onkol. 165(2/3):167 (1989).Google Scholar
  4. 4.
    R. G. Fairchild, D. Gabel, B. H. Laster, D. Greenberg, W. Kiszenick, and P. L. Micca, “Microanalytical Techniques for Boron Analysis Using the 10B(n,a)7Li Reaction,” Med. Phys. 13:50 (1986).Google Scholar
  5. 5.
    P. G. Marshall, M. E. Miller, S. Grand, P. L. Micca, and D. N. Slatkin, “Toxicities of Na2B12H11SH and Na4B24H22S2 in Mice,” in Proc. 1988 Workshop on Clinical Aspects of Neutron Capture Therapy R. G. Fairchild, V. P. Bond, and A. D. Woodhead, eds., Basic Life Sciences Series, Vol. 50, Plenum Press, New York, p. 333 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. N. Slatkin
    • 1
  • J. A. Kalef-Ezra
    • 2
  • S. K. Saraf
    • 1
  • D. D. Joel
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Laboratory of Medical Physics, School of MedicineUniversity of IoanninaIoanninaGreece

Personalised recommendations