Skip to main content

Monte Carlo Based Dosimetry and Treatment Planning for Neutron Capture Therapy of Brain Tumors

  • Chapter
Neutron Beam Design, Development, and Performance for Neutron Capture Therapy

Part of the book series: Basic Life Sciences ((BLSC,volume 54))

Abstract

Monte Carlo based dosimetry and computer-aided treatment planning for neutron capture therapy have been developed to provide the necessary link between physical dosimetric measurements performed on the MITR-II epithermal-neutron beams and the need of the radiation oncologist to synthesize large amounts of dosimetric data into a clinically meaningful treatment plan for each individual patient. Monte Carlo simulation has been employed to characterize the spatial dose distributions within a skull/brain model irradiated by an epithermal-neutron beam designed for neutron capture therapy applications. The geometry and elemental composition employed for the mathematical skull/brain model and the neutron and photon fluence-to-dose conversion formalism are presented. A treatment planning program, NCTPLAN, developed specifically for neutron capture therapy, is described. Examples are presented illustrating both one and two-dimensional dose distributions obtainable within the brain with an experimental epithermal-neutron beam, together with beam quality and treatment plan efficacy criteria which have been formulated for neutron capture therapy. The incorporation of three-dimensional computed tomographic image data into the treatment planning procedure is illustrated. The experimental epithermal-neutron beam has a maximum usable circular diameter of 20 cm, and with 30 ppm of B-10 in tumor and 3 ppm of B-10 in blood, it produces (with RBE weighting) a beam-axis advantage depth of 7.4 cm, a beam-axis advantage ratio of 1.83, a global advantage ratio of 1.70, and an advantage depth RBE-dose rate to tumor of 20.6 RBE-cGy/min (cJ/kg-min). These characteristics make this beam well suited for clinical applications, enabling an RBE-dose of 2,000 RBE-cGy/min (cJ/kg-min) to be delivered to tumor at brain midline in six fractions with a treatment time of approximately 16 minutes per fraction. With parallel-opposed lateral irradiation, the planar advantage depth contour for this beam (with the B-10 distribution defined above) encompasses nearly the whole brain. Experimental calibration techniques for the conversion of normalized to absolute treatment plans are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. L. Brownell, R. G. Zamenhof, B. W. Murray, and G. R. Wellum, “Boron Neutron Capture Therapy,” in Therapy in Nuclear Medicine, R. P. Spencer, ed., Grime and Stratton, Inc., New York (1978).

    Google Scholar 

  2. Proc. Third Int. Symp. on Neutron Capture Therapy, Strahlenther. Onkol., D. Gabel, ed., 165(2/3):5–257 (1989).

    Google Scholar 

  3. G. L. Locher, “Biologic Effects and Therapeutic Possibilities of Neutrons,” Am. J. Roentgenol., 36:1 (1936).

    CAS  Google Scholar 

  4. H. Hatanaka, “Clinical Experience of Boron-Neutron Capture Therapy for Gliomas — A Comparison with Conventional Chemo-Immuno-Radiotherapy,” in Boron-Neutron Capture Therapy for Tumors, H. Hatanaka, ed., Nishimura Co., Ltd., Niigata, Japan, p. 349 (1986).

    Google Scholar 

  5. A. H. Soloway, “Chemical Aspects of Neutron Capture Therapy,” in Radionuclide Applications in Neurology and Neurosurgery, Y. Wang and P. Paoletti, eds., Charles Thomas, Springfield, IL (1970).

    Google Scholar 

  6. R. G. Fairchild, “Development and Dosimetry of an ‘Epithermal’ Neutron Beam for Possible Use in Neutron Capture Therapy, ” Phys. Med. Biol., 10 (4): 491 (1965).

    Article  Google Scholar 

  7. R. G. Zamenhof, B. W. Murray, G. L. Brownell, G. R. Wellum, and E. I. Tolpin, “Boron Neutron Capture Therapy for the Treatment of Cerebral Gliomas: I. Theoretical Evaluation of the Efficacy of Various Neutron Beams,” Med. Phys., 2(2):47 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. R. G. Fairchild and V. P. Bond, “Current Status of B-10 Neutron Capture Therapy: Enhancement of Tumor Dose via Beam Filtration and Dose Rate, and the Effects of these Parameters on Minimum Boron Content: A Theoretical Evaluation,” Int. J. Radiat. Oncol. Biol. Phys., 11(4):831 (1985).

    PubMed  CAS  Google Scholar 

  9. O. K. Harling, S. D. Clement, J. R. Choi, J. A. Bernard, and R. G. Zamenhof, “Neutron Beams for Neutron Capture Therapy at the MIT Research Reactor,” Strahlenther. Onkol., 165(2/3):90 (1989).

    PubMed  CAS  Google Scholar 

  10. R. G. Zamenhof, S. D. Clement, K. Lin, C. Lui, D. Ziegelmiller, and O. K. Harling, “Monte Carlo Treatment Planning and High-Resolution Alpha-Track Autoradiography for Neutron Capture Therapy,” Strahlenther. Onkol., 165(2/3): 188 (1989).

    PubMed  CAS  Google Scholar 

  11. R. G. A. Zamenhof, H. Madoc-Jones, O. K. Harling, and J. A. Bernard, Jr., “Clinical Considerations in the Use of Thermal and Epithermal Neutron Beams for Neutron Capture Therapy,” in Proc. 1988 Workshop on Clinical Aspects of Neutron Capture Therapy, R.G. Fairchild, V. P. Bond, and A. D. Woodhead, eds., Basic Life Sciences Series, Vol. 50, Plenum Press, New York, p. 121 (1989).

    Chapter  Google Scholar 

  12. J. R. Choi, S. D. Clement, O. K. Harling, and R. G. Zamenhof, “Neutron Capture Therapy Beams at the MIT Research Reactor.” (These Proceedings.)

    Google Scholar 

  13. S. D. Clement, J. R. Choi, R. G. Zamenhof, and O. K. Harling, “Monte Carlo Methods of Neutron Beam Design for Neutron Capture Therapy at the MIT Research Reactor (MTTR-II).” (These Proceedings.)

    Google Scholar 

  14. G. R. Wellum, R. G. Zamenhof, and E. I. Tolpin, “Boron Neutron Capture Radiation Therapy of Cerebral Gliomas: An Analysis of the Possible Use of Boron-Loaded Tumor-Specific Antibodies for the Selective Concentration of Boron in Gliomas,” Int. J. Radiat. Oncol. Biol. Phys., 8(8):1339 (1983).

    Google Scholar 

  15. T. Matsumoto and O. Aizawa, “Depth-Dose Evaluations and Optimization of the Irradiation Facility for Boron Neutron Capture Therapy of Brain Tumors,” Phys. Med. Biol 30(9):897 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. J. F. Briesmeister, ed., “MCNP — A General Monte Carlo Code for Neutron and Photon Transport, Version 3A,” Los Alamos National Laboratory, LA-7396-M, Rev. 2 (1986).

    Google Scholar 

  17. W. S. Snyder, M. R. Ford, G. G. Warner, and H. L. Fisher, Jr., “Estimates for Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom,” MIRD, J. Nucl. Med., Suppl. No. 3, Pamphlet 5, p. 47 (1969).

    Google Scholar 

  18. B. W. Murray, O. L. Deutsch, R. G. Zamenhof, and G. L. Brownell, “New Approaches to the Dosimetry of Boron Neutron Capture Therapy at MIT-MGH,” in Biomedical Dosimetry, IAEA, Vienna (1975).

    Google Scholar 

  19. O. L. Deutsch, and B. W. Murray, “Monte Carlo Dosimetry Calculation for Boron Neutron Capture Therapy in the Treatment of Brain Tumors,” Nucl. Technol., 26:320 (1975).

    CAS  Google Scholar 

  20. R. A. Brooks, G. DiChiro, and M. R. Keller, “Explanation of Cerebral White-Gray Contrast in Computed Tomography,” J. Comp. Assist. Tomog., 4(4):489 (1980).

    Google Scholar 

  21. M. A. Weissberger, R. G. Zamenhof, S. Aronow, and R. M. Neer, “Computed Tomography Scanning for the Measurement of Bone Mineral in the Human Spine,” J. Comp. Assist. Tomog., 2:253 (1978).

    Article  Google Scholar 

  22. E. Betz, “Cerebral Blood: Its Measurement and Regulation,” Physiological Reviews, 3: 595 (1972).

    Google Scholar 

  23. BNL-325, Suppl. No. 2, 6th Ed. (1988).

    Google Scholar 

  24. J. H. Hubbel, “Photon Mass Attenuation and Energy Absorption Coefficients from 1 KeV to 20 MeV,” Int. J. Appl. Rachat. Isot., 33:1269 (1982).

    Article  Google Scholar 

  25. R. S. Caswell, J. J. Coyne, and M. L. Randolph, “KERMA Factors of Elements and Compounds for Neutron Energies Below 30 MeV,” Int. J. Appl. Radiat. Isot., 33:1227 (1982).

    Article  CAS  Google Scholar 

  26. A. K. Asbury, R. Ojemann, and S. L. Nielsen, “Neuropathologic Study of Fourteen Cases of Malignant Brain Tumors Treated by Boron-10 Slow Neutron Capture Therapy,” J. Neuropathol. Exp. Neurol., 31:278 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. L. E. Kun, “The Brain and Spinal Cord,” in Radiation Oncology: Rationale, Techniques, Results, W. T. Moss and J. D. Cox, eds., 6th Ed., C. V. Mosby Co., St. Louis, MO, p. 597 (1989).

    Google Scholar 

  28. K. Kitao, “Vascular Wall Dose from Boron Neutron Capture Reaction,” in Boron-Neutron Capture Therapy for Tumors, H. Hatanaka, ed., Nishimura Co., Ltd., Niigata, Japan, p. 191 (1986).

    Google Scholar 

  29. Rapporteurs’ Report. (These Proceedings.)

    Google Scholar 

  30. R. G. Zamenhof, W. C. Schoene, G. L. Brownell, G. R. Wellum, H. Hatanaka, A. Takeuchi, and M. Shalev, “An Investigation of the Tolerance of Canine Brain to Thermal Neutron Capture Therapy.” (In Preparation.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Zamenhof, R.G. et al. (1990). Monte Carlo Based Dosimetry and Treatment Planning for Neutron Capture Therapy of Brain Tumors. In: Harling, O.K., Bernard, J.A., Zamenhof, R.G. (eds) Neutron Beam Design, Development, and Performance for Neutron Capture Therapy. Basic Life Sciences, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5802-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5802-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5804-6

  • Online ISBN: 978-1-4684-5802-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics