Blood-Brain Barrier and Neuroendocrine Regulations

  • D. Ježová
  • Z. Opršalová
  • F. Héry
  • M. Héry
  • A. Kiss
  • J Jurčovičová
  • J. Chauveau
  • C. Oliver
  • B. B. Johansson
  • M. Vigaš
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 274)


Neuroendocrine regulatory processes have been intensively studied, and a considerable amount of data has accumulated on the central regulatory mechanisms involved in the control of pituitary hormone release. Special attention has been given to monoamines and peptides of central origin that act as neurotransmitters and neuromodulators, and there are several reviews summarizing the large amount of information on this important topic (1–5). Nevertheless, many results dealing with the effects of various neuroactive substances on the secretion of individual pituitary hormones are controversial and need further elucidation.


Corticotropin Release Factor Protamine Sulfate Prolactin Release Neuroendocrine Regulation Luteinizing Hormone Concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tuomisto, J., and P. Mannisto, Neurotransmitter regulation of anterior pituitary hormones, Pharmacol Rev 37 249–332,1985.PubMedGoogle Scholar
  2. 2.
    Negro-Vilar, A., C. Johnston, E. Spinedi, M. Valenca, and F. Lopez, Physiological role of peptides and amines on the regulation of ACTH secretion, Ann NY Acad Sci 512 218–236, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Delitala, G., P. Tomasi, and R. Virdis, Neuroendocrine regulation of human growth hormone secretion. Diagnostic and clinical applications, J Endocrinol Invest 11 441–462, 1988.PubMedGoogle Scholar
  4. 4.
    Jones, M.T., and B. Gillham, Factors involved in the regulation of adrenocorticotropic hormone/-lipotropic hormone, Physiol Rev 68 743–818, 1988.PubMedGoogle Scholar
  5. 5.
    Al-Damluji, S., D. Cunnah, A. Grossman, L. Perry, G. Ross, D. Coy, L.H. Rees, and G.M. Besser, Effect of adrenaline on basal and ovine corticotrophin-releasing factor-stimulated ACTH secretion in man, J Endocrinol 112 145–150, 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferguson, A. V., Systemic angiotensin acts at the subfornical organ to control the activity of paraventricular nucleus neurons with identified projections to the median eminence, Neuroendocrinology 47489–497,1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Plotsky, P.M., S.W. Sutton, T.O. Bruhn, and A.V. Ferguson, Analysis of the role of angiotensin II in mediation of adrenocorticotropin secretion, Endocrinology 122 538–545, 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Cornford, E.M., The blood-brain barrier, a dynamic regulatory interface, Mol Physiol 7 219–260, 1985.Google Scholar
  9. 9.
    Johansson, B.B., and L. Martinsson, The blood brain barrier in adrenaline-induced hypertension. Orcadian variations and modification by beta-adrenoreceptor antagonists, Acta Neurol Scand 62 96–102, 1980.PubMedCrossRefGoogle Scholar
  10. 10.
    Johansson, B.B., O. Isaksson, Circadian variation of cerebral vessel vulnerability during adrenaline-induced hypertension, In D.D. Heistad and M.L. Marcus (eds) Cerebral Blood Flow Effects of Nerves and Neurotransmitters ,Elsevier North Holland, Amsterdam, pp. 367–375, 1982.Google Scholar
  11. 11.
    Johansson, B.B., Effect of beta-adrenoreceptor antagonists on the increased cerebrovascular permeability to protein induced by amphetamine, Prog Neuropsychopharmacol 2 529–534, 1978.CrossRefGoogle Scholar
  12. 12.
    Johansson, B.B., Blood-brain barrier dysfunction in acute arterial hypertension after papaverine-induced vasodilatation, Acta N eurolog Scand 50 573–580, 1974.CrossRefGoogle Scholar
  13. 13.
    Johansson, B.B., The blood-brain barrier in acute and chronic hypertension, In H.M. Eisenber and R.L. Suddith (eds) The Cerebral Microvasulature ,Plenum Press, New York, pp. 211–226, 1980.Google Scholar
  14. 14.
    Johansson, B.B., and L. Martinsson, β-adrenoreeeptor antagonists and the dysfunction of the blood-brain barrier induced by adrenaline, Brain Res 181 219–222, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Johansson, B.B., and M. Henning, 6-Hydroxydopamine and the blood-brain barrier in adult conscious rats, Acta Physiol Scand 110 1–4, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Johansson, B.B., Pharmacological modification of hypertensive blood-brain barrier opening, Acta Pharmacol Toxicol 48 242–247, 1981.CrossRefGoogle Scholar
  17. 17.
    Ježová, D., B.B. Johansson, Z. Opršalová, and M. Vigaš, Changes in blood-brain barrier function modify the neuroendocrine response to circulating substances, Neuroendocrinology 49 428–433, 1989.PubMedCrossRefGoogle Scholar
  18. Ježová, D., B.B. Johansson, Y. Olsson, Z. Opršalová, A. Kiss, J. Jurčovičová, J. Grassier, I. Westergren, and M. Vigas, Can catecholamines and other neurotransmitters cross the blood-brain barrier and modify neuroendocrine function under stress?, In G.R. Van Loon, R. Kvetňanský, and J. Axelrod (eds) Stress Neurochemical and Humoral Mechanisms ,Gordon & Breach Science Publishers, New York, In Press.Google Scholar
  19. 19.
    Long, J.B., and J.W. Holaday, Blood-brain barrier endogenous modulation by adrenal-cortical function, Science 227 1580–1583, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Fuller, R.W., and H.D. Snoddy, Elevation of serum corticosterone concentrations in rats by pergolide and other dopamine agonists, Endocrinology 109 1026–1032, 1981.PubMedCrossRefGoogle Scholar
  21. 21.
    Fuller, R.W., H.D. Snoddy, N.R. Mason, JA. Clemens, and K.G. Bemis, Elevation of serum corticosterone in rats by dopamine agonists related in structure to pergolide, Neuroendocrinology 36 285–290, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Ježová, D., J. Jurčovičová, M. Vigaš, K. Murgaš, and F. Labrie, Increase in plasma ACTH after dopaminergic stimulation in rats, Psychopharmacology 85 201–203, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Ježová, D., and M. Vigaš, Apomorphine injection stimulates β-endorphin, adrenocorticotropin, and Cortisol release in healthy man, Psychoneuroendocrinology 13 479–485, 1988.PubMedCrossRefGoogle Scholar
  24. 24.
    Vigaš, M., D. Ježová, J. Jurčovčová, E. Kellerová, V. Strbák, and R. Kvetňanský, Effect of increased plasma catecholamines on adenopituitary secretion, In E. Usdin, R. Kvetňanský, and I.J. Kopin (eds) Catecholamines and Stress Recent Advances ,Elsevier North/Holland, New York, pp. 143–148, 1980.Google Scholar
  25. 25.
    Ježová-Repcekovác, D., M. Vigaš, and I. Klimeš, Effect of glucose on plasma Cortisol level after L-dopa administration in man, Horm Metab Res 12 280–281, 1980.CrossRefGoogle Scholar
  26. 26.
    Balestreri, R., S. Bertolini, and C. Castello, The neural regulation of ACTH secretion in man, In A. Polleri and R.M. MacLeod (eds) Neuroendocrinology Biological and Clinical Aspects ,Academic Press, London, pp. 155–185, 1979.Google Scholar
  27. 27.
    Giraud, P., J.C. Lissitzky, B. Conte-Devolx, P. Gillioz, and C. Oliver, Influence of haloperidol on ACTH and -endorphin secretion in the rat, Eur J Pharmacol 62 215–217, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Murburg, M.M., D. Paly, C.W. Wilkinson, R.C. Veith, K.L. Malas, D.M. Dorsa, Haloperidol increases plasma beta endorphin-like immunoreactivity and Cortisol in normal human males, Life Sci 39 373–381, 1986.PubMedCrossRefGoogle Scholar
  29. 29.
    Al-Damluji, S., Adrenergic mechanisms in the control of corticotrophin secretion, J Endocrinol 119 5–14, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Axelrod, J., and T.D. Reisine, Stress hormones Their interaction and regulation, Science 224 452–459, 1984.PubMedCrossRefGoogle Scholar
  31. 31.
    Makara, G.B., R. Kvetňanský, D. Ježová, A. Jindra, I. Kakucska, and Z. Opršalová, Plasma catecholamines do not participate in pituitary-adrenal activation by immobilization stress in rats with transection of nerve fibers to the median eminence, Endocrinology 119 1757–1762, 1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Ježová, D., R. Kvetňanský, K. Kovács, Z. Opršalová, M. Vigaš, and G.B. Makara, Insulin-induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propranolol insensitive mechanisms, Endocrinology 120 409–415, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Kvetňanský, R., FJ.H. Tilders, I.D. Van Zoest, M. Dobrakovová, F. Berkenbosch, J. Culman, P. Zeman, and P.G Smelik, Sympathoadrenal activity facilitates beta-endorphin and alpha-MSH secretion but does not potentiate ACTH secretion during immobilization stress, Neuroendocrinology 45 318–324, 1987.PubMedCrossRefGoogle Scholar
  34. 34.
    Ježová, D., R. Kvetňanský, FJ.H. Tilders, and G.B Makara, Interaction of circulating catecholamines, CRF and AVP in the control of ACTH release during stress, In G.R. Van Loon, R. Kvetňanský, and J. Axelrod (eds) Stress Neurochemical and Humoral Mechanisms ,Gordon & Breach Science Publishers, New York, In Press, 1989.Google Scholar
  35. 35.
    Vigaš, M., R. Kvetňanský, J. Jurčovčová, D. Ježová, and P. Tatar, Comparison of catecholamine and adenopituitary hormone responses to various stress stimuli in man, In E. Usdin, R. Kvetňanský, and J. Axelrod (eds) Stress The Role of Catecholamines and Other Neurotransmitters ,Gordon and Breach Science Publishers, New York, pp. 865–882, 1984.Google Scholar
  36. 36.
    Johansson, B.B., C.L. Li, Y. Olsson, and I. Klatzo, The effect of acute arterial hypertension on the blood-brain barrier to protein tracers, Acta Neuropathol 16 117–124, 1970.PubMedCrossRefGoogle Scholar
  37. 37.
    Belova, T.I., and G. Jonsson, Blood-brain barrier permeability and immobilization stress, Acta Physiol Scand 116 21–29, 1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma, H.S., P.K. and Dey, Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats, J Neurol Sci 72 61–76, 1986.PubMedCrossRefGoogle Scholar
  39. 39.
    Szafarczyk, A., Le Systeme serotoninergique dans les regulations neuroendocriniennes, In M. Briley (ed) Le Systeme Serotoninergique et sa Regulation, Les Entretiens du Carla ,Centre de Recherche P. Fabre, Castres, pp. 47–77, 1986.Google Scholar
  40. 40.
    Montange, M., and A. Calas, Serotonin and endocrinology ->the pituitary, In N.N. Osborne and M. Hamon (eds) Neuronal Serotonin ,John Wiley and Sons, pp. 271–303, 1988.Google Scholar
  41. 41.
    Telegdy, G., I. Vermes, and G.L. Kovács, Effect of drug induced changes in brain monoamines on neuroendocrine and behavioral processes, In K. Magyar (ed) Second Congress Hungarian Pharmacologic Society Symposium of Catecholaminergic and Serotonergic Mechanisms ,Akad. Kiado, Budapest, pp. 101–105, 1976.Google Scholar
  42. 42.
    Vernikos-Danellis, J., K.J. Kellar, D. Kent, C. Gonzales, PA. Berger, and J.D. Barchas, Serotonin involvement in pituitary adrenal function, Ann NY Acad Sci 297 518–526, 1977.PubMedCrossRefGoogle Scholar
  43. 43.
    Ixart, G., A. Szafarczyk, F. Malaval, J. Nouguier-Soule, and I. Assenmacher, Facteurs de regulations des reponses plasmatiques de l’ACTH et de LH au stress chez le rat, Ann d’Endocrinol 41 10C, 1980 (Abstract #15).Google Scholar
  44. 44.
    Rose, J.C., and W.F Ganong, Neurotransmitter regulation of the pituitary secretion, In W.F. Essman, L. Valzelli, and N.Y. Holliswood (eds) Current Developments in Psychopharmacology, Volume 5, Spectrum, pp. 87–123, 1976.Google Scholar
  45. 45.
    Robert, A.M., G. Godeau, M. Miskulin, and F. Moati, Mechanism of action of collagenase on the permeability of the blood-brain barrier, Neurochem Res 2 449–455, 1977.CrossRefGoogle Scholar
  46. 46.
    Godeau, G., M. Miskulin, J.M. Tixier, A. Kemeny, and A.M. Robert, Intensité et durée d’action des proteases dan la rupture post-ischémique de la barrière hématoencephalique, Drugs Dis 1 90–101,1984.Google Scholar
  47. 47.
    Godeau, G., C. Gavignet, N. Groult, and A.M. Robert, Effect of chromocarb diethylamine on the permeability of the blood brain barrier, Clin Physiol Biochem 5 15–26, 1987.PubMedGoogle Scholar
  48. 48.
    Chauveau, J., V. Sert, A.M. Morel, and MA. Delaage, A new, rapid and specific enzyme immunoassay for serotonin, In Abstracts of International Symposium on Serotonin from Cell Biology to Pharmacology and Therapeutics ,Florence, March 29-April 1, 1989, In Press.Google Scholar
  49. 49.
    Weiner, R.I., and W.F. Ganong, Role of brain monoamines and histamine in regulation of anterior pituitary secretion, Physiol Rev 58 905–976, 1978.PubMedGoogle Scholar
  50. 50.
    Martin, J.E., J.N. Engel, and D.C. Klein, Inhibition of the in vitro pituitary response to luteinizing hormone-releasing hormone by melatonin, serotonin, and 5-methoxytryptamine, Endocrinology 100 675–680, 1977.PubMedCrossRefGoogle Scholar
  51. 51.
    Pilotte, N.S., and J.C. Porter, Circulating luteinizing hormone and prolactin concentrations in intact or castrated male rats treated with 5-hydroxytryptamine, Endocrinology 105 875–878, 1979.PubMedCrossRefGoogle Scholar
  52. 52.
    Pilotte, N.S., and J.C. Porter, Dopamine in hypophysial portal plasma and prolactin in systemic plasma of rats treated with 5-hydroxytryptamine, Endocrinology 108 2137–2141, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. Ježová
    • 1
  • Z. Opršalová
    • 1
  • F. Héry
    • 1
    • 2
  • M. Héry
    • 1
    • 2
  • A. Kiss
    • 1
  • J Jurčovičová
    • 1
  • J. Chauveau
    • 1
    • 3
  • C. Oliver
    • 1
    • 2
  • B. B. Johansson
    • 1
    • 4
  • M. Vigaš
    • 1
  1. 1.Institute of Experimental Endocrinology CPSSlovak Academy of SciencesBratislavaCzechoslovakia
  2. 2.Inserm U. 297Laboratory of Experimental NeuroendocrinologyMarseilleFrance
  3. 3.ImmunotechMarseilleFrance
  4. 4.Department of NeurologyUniversity HospitalLundSweden

Personalised recommendations